

FIRST RESULTS FROM THE LONG BASELINE EPOCH OF REIONISATION SURVEY

CHRISTENE LYNCH (ICRAR-CURTIN)

International Centre for Radio Astronomy Research

CALIBRATING & SUBTRACTING INCOMPLETE SKY MODELS

Several groups have reported that an accurate and complete sky model, used for data calibration and signal subtraction, is important for a successful detection of EoR signal (e.g. Trott et al. 2012; Patil et al. 2016; Beardsley et al 2016, Barry et al. 2016).

Two effects seen:

(1) Diffuse foregrounds are suppressed at short baselines

(2) Long baselines show excess power above the thermal noise

Patil et al. 2016

HOLKO OD

CONSIDERING SIDE-LOBE SOURCES

ASTRU JU

Chromatic effects in the interferometer response become stronger far from pointing centre.

> Expect side-lobe sources to create foreground contamination in higher k_{\parallel} modes than sources near the pointing center.

Pober et al. 2016

ADDITIONAL POWER IN SIDE-LOBES

HOLKO OD

Subtraction reveals significant difference outside first null of primary beam.

Removing sources in side-lobes removes power at high k_{\parallel} .

Pober et al. 2016

GLEAM SOURCES IN TGSS

Procopio et al. 2017 cross-matched EoR 1 sources in GLEAM with TGSS:

Found ~13% GLEAM sources matched with >2 TGSS sources

AOTKU JU

How does mis-modelling doubles & extended sources affect PS?

Procopio et al. 2017

IMPACT OF MIS-MODELED SOURCES

Residuals from modelling multiples & extended sources correctly to modeled as point sources.

Factor of two improvement in residual power in EoR window.

Procopio et al. 2017

ASTRU JU

IMPACT OF MIS-MODELED SOURCES

Residuals from modelling multiples & extended sources

Mis-modelled bright extended sources contribute the most execess power

Procopio et al. 2017

ASTRU JU

SURVEY DETAILS

The Long Baseline Epoch of Reionisation Survey (LoBES):

ASTRU JU

MWA phase II extended array observations to improve source models of point and extended sources in the MWA primary beam sidelobes of the EoR0 and EoR1 fields.

Four frequency bands:

- 103 134 MHz
- 139 170 MHz
- 170 200 MHz
- 200 231 MHz

40 minutes per frequency per field.

SURVEY DETAILS

The Long Baseline Epoch of Reionisation Survey (LoBES):

ASTRU JU

MWA phase II extended array observations to improve source models of point and extended sources in the MWA primary beam sidelobes of the EoR0 and EoR1 fields.

Four frequency bands:

- 103 134 MHz 139 – 170 MHz
- 170 200 MHz
- 200 231 MHz

40 minutes per frequency

NEW MULTIPLES & COMPLEX SOURCES

NEW MULTIPLES & COMPLEX SOURCES

MWA PHASE II FORNAX A

Extended array over-resolves the bright, more diffuse emission – need Phase I & II data to get complete model of this emission.

PRELIMINARY CROSS MATCH RESULTS

Table 3. Number of LOBES sources matched to a single GLEAM source

Number of LOBES sources	Number of instances
1	40730
2	1721
3	43
4	4

Stay tuned!

SUMMARY

The accuracy of the sky model used for data calibration and signal subtraction is important for a successful detection of EoR signal.

HOLKO DD

Sources far from pointing centre have largest systematic input into EoR power spectrum; side-lobe foreground source need to be considered.

Extended and multi-component sources need detailed modelling for subtraction – subtracting them as point sources leaves excess power that biases the EoR signal.

LoBES: Uses MWA phase II observations to tackle both extended source modelling and side-lobe source contamination.