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Abstract

We describe the general framework for a cosmological gravitational-wave background
(GWB) search with a laser-interferometric gravitational-wave (GW) detector. What
we studied in this thesis can be divided into two topics: (i) the search for non-tensorial
polarization modes (scalar- and vector-like polarizations) of a GWB with a large-scale
laser-interferometric detector pair on the ground, (ii) the GWB search at ultra-high
frequencies (∼ 100 MHz) with a pair of meter-sized laser-interferometric detectors.

The first topic is involved in the theories with extra dimensions and the modified
gravity theories. In the general relativity, there are two polarization modes of a GW.
However, in the general theories of gravity, six polarization modes are allowed. If the
extra polarization modes of GWB are detected, we can obtain some information about
new physics. The search has not been performed at all so far with an interferometer. So,
we extended the conventional formalism of a cross-correlation analysis to non-tensorial
polarization modes and calculated the sensitivity to the GWB. We also discussed the
detectability with real detector pairs.

The second topic is the search for a GWB at ultra high frequencies. It is also im-
portant because some models in cosmology and particle physics predict relatively large
GWB at ultra-high frequency ∼ 100 MHz. Upper limits on GWB in wide-frequency
ranges have been obtained from various observations. However, they are all indirectly
derived from the observations. As far as we know, little direct experiment has been
done above 100 kHz except for a few experiments, though the direct constraint is much
weaker than the constraints at other frequencies. Thus, a much tighter bound above
100 kHz is needed to test various theoretical models.

First, we investigated the laser-interferometric detector designs that can effectively
respond to GW at high frequencies, and found that the configuration, a so-called
synchronous-recycling interferometer (SRI) is the best at these sensitivities. Then,
we investigated the location and orientation dependence of two SRIs in detail, and
derived the optimal location of the two detectors and the cross-correlation sensitivity
to a GWB. We also describe the experiment done by our group and the results. These
studies are not limited at the search at ∼ 100 MHz, but can also be applied to the
detectors in which the wavelength of a GW is comparable with the detector size.

As a developed version of the SRI, we proposed a new detector design, a so-called
resonant speed meter (RSM). The remarkable feature of this interferometer is that, at
certain frequencies, gravitational-wave signals are amplified, while displacement noises
are not. We also studied the quantum noise in a RSM, and its ultimate sensitivity.
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Chapter 1

Introduction

1.1 Gravitational waves

A gravitational wave (GW) is a ripple of spacetime, which propagates as a wave with
the speed of light. The GW is predicted according to the theory of general relativity,
published in 1916 by Einstein [1]. Nowadays, the many predictions of the General
relativity have been confirmed in many observations and experiments [2]: gravitational
lensing, Shapiro delay in the solar system, the perihelion advance of the planet Mercury,
dragging of an inertial frame, etc.. In addition, the binary pulsars supply us with the
splendid opportunities to test the general relativity, owing to the considerable stability
and the strong gravity. From the observation of the change in the revolution period
of B1931+16 (Hulse-Taylar binary pulsar), general relativity has been tested at a level
of 1%, and the indirect evidence of the existence of GWs has been obtained [3, 4].
Recently, Valtonen et al. have claimed that a new indirect evidence is found by the
observation of a binary system of two candidate black holes in the quasar OJ 287 [5].

These evidences lead us to strongly believe the existence of GWs. Nevertheless,
GWs have not directly detected yet. Aiming for the first direct detection of GWs,
many research groups have constructed large detectors and done observations with the
sensitivity improved by degrees.

1.2 Gravitational-wave sources

GWs are radiated by objects whose motion involves acceleration, provided that the
motion is not spherically symmetric nor axisymmetric [6]. A number of GW sources
have been theoretically predicted, as shown in Fig. 1.1 together with the sensitivities
of GW detectors.

Gravitational waves from astrophysical sources

The promising GW sources with astronomical origins are violent events involving com-
pact objects, such as supernovae, gamma-ray bursts, the binaries of neutron stars,
black holes, and white dwarfs and their mergers, and spinning-down pulsars. Recent

1
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study and observational data suggested a part of supernovae and gamma-ray bursts are
related to the mergers of neutron stars, black holes, and white dwarfs. The GWs from
these systems are important in that not only do they provide the test in the strong
regime of gravity, but also they will bring new information that one cannot obtain by
the observations with electromagnetic waves. This is owing to the strong transparency
of GWs. Electromagnetic waves are scattered at the outer layer of the stars and the
plasma around it, and prevent us from directly seeing the core of the stars. In con-
trast, GWs can escape from the dense regions of the stars and directly propagate to
the Earth. Thus, we can investigate the equation of state in extremely high-density
region such as an inner core of a neutron star, the strong regime of gravity and its
environment around a black hole, the explosion mechanism of a supernova, the central
engine of a gamma-ray burst, the inner region veiled by dust such as the accretion disk
around a compact object, etc..

Figure 1.1: Schematic view of GW sources and detector sensitivities. In the figure,
the noise curves of LIGO, LCGT, LISA, and DECIGO are representationally shown.
As for the magnitude of the noise curve, VIRGO is almost the same as LIGO, BBO
is almost the same as DECIGO, and the second-generation interferometers (advanced
LIGO, advanced VIRGO, and AIGO) are almost the same as LCGT, though TAMA
and GEO are slightly worse than LIGO and VIRGO.

Cosmological gravitational-wave background

There is another type of GWs, called gravitational wave background (GWB), which is
the superposition of a huge number of GWs with random phases (for the review, [7]).
This is an analogy of cosmic microwave background (CMB). The CMB was discovered
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by Penzias and Wilson in the mid 1960s as an isotropic radiation over the sky [8],
and the COsmic Background Explorer (COBE) was first detected the anisotropy of
the CMB in 1992 [9]. Then, the Wilkinson Microwave Anisotropy Probe (WMAP)
satellite was launched in 2001, precisely measured the CMB anisotropic temperature
fluctuations, and determined cosmological parameters with astonishing accuracy in
2003 [10, 11, 12, 13, 14] (The WMAP has been yielded the observational data, and
the updated cosmological parameters with fifth-year data have been published [15].).
The difference between CMB and GWB is the epoch of the decoupling. CMB photons
decouple when the energy scale of the universe is ∼ 0.3 eV, corresponding to the redshift
z ∼ 1100. On the other hand, gravitons decouple at the Planck energy scale of ∼
1019 GeV, because of the small coupling rate of the gravitational interaction. Therefore,
the GWB created in the early universe survives without loss of the information of the
universe when it created, and would be a powerful tool for a probe of the early universe
beyond the last scattering surface for the CMB. Such a GWB and the detection are
the main topic of this thesis.

The most popular mechanism generating cosmological GWB is inflation. The in-
flation is the most successful theoretical paradigm in the early universe. In the sce-
nario, the universe undergoes a rapid accelerating expansion, and provides the seeds
of inhomogeneity for large-scale structure today [16, 17, 18, 19]. During the inflation,
quantum fluctuations in spacetime curvature are also extended beyond the horizon,
and may transit to classical fluctuations. In particle-physics point of view, this process
is described as gravitational particle production. The relic gravitons would exist today
as a stochastic GWB. The basic predictions in the inflationary scenario have confirmed
by the analysis combining the data of the WMAP, the galaxy redshift surveys, the su-
pernova observations [15, 20, 21, 22]. However, there are still many inflationary models
that are compatible with current observational constraints. Hence, complementary ob-
servations are necessarily required in order to shrink the parameter space. The GWB
is adequate for this purpose, since it is an only way to directly probe the inflation and
the involved high-energy physics.

Other processes in the early universe, such as preheating and phase transitions, and
cosmic strings also produces GWB, whose spectrum strongly depends on the production
mechanism. Therefore, the detection or non-detection of the GWB bring us crucial
imformation of the early universe and high-energy physics, and can be used for the
tests of theoretical models.

Astrophysical gravitational-wave background

GWBs also generated by astrophysical objects such as neutron stars, black holes, white
dwarfs, and massive stars, though this is not the topic of this thesis. If the event rate is
small, the superposition of GWs does not become a stochastic GWB, but a popcorn-like
GWB that individual sources can be resolved. However, if the event rate is large, such
GWBs cannot be distinguished from the inflationary GWB. So, the astrophysical GWB
would often be obstacle to detect the inflationary GWB. However, the astrophysical
GWB brings us crucial information in the early universe with the redshift from a few
to tens: the formation rate of the first stars, the event rate of supernovae, branching
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ratio between black hole and neutron star formation, mass and angular-momentum
distribution of black holes at the births, black-hole growth mechanisms. Hence, such
information plays very important role in the study of large-scale structures and their
evolutions.

Therefore, the GW is promising tool for cosmology and astronomy, since they brings
new information that one cannot obtain by the observations with electromagnetic
waves.

1.3 Gravitational-wave detectors

A gravitational-wave detector can be classified into two types: a laser-interferometric-
type and a resonant-mass type. For the more detailed review of the up-to-date status
of the ground-based detectors, see [23].

Resonant-mass-type detectors

Surprisingly, the history of GW detector is long. In the 1960s, the research of the
resonant mass was started by Weber [24]. The principle is simple, that the vibration of
an elastic (large metal cylinder) induced by GWs is electrically amplified and detected
by transducers. In 1969, Weber reported the coincident detection of the GW with
resonant bars apart by 1000 km [25]. However, no GW was detected in subsequent
experiments by various people. Thus, in these days, it is not believed that the Weber’s
event was due to true GWs.

In the initial period of the history of GW search by the mid-1990s, the bar detec-
tors had been a popular detector design, and a number of the bar detector in various
countries were evolved. However, the large community today has shrunk to four oper-
ating detectors [26, 27, 28]: EXPLORER (CERN, Geneva, Switzerland), NAUTILUS
(INFN Frascati Laboratory, near Rome, Italy), AURIGA (INFN Legnaro Laboratory,
near Padua, Italy), ALLEGRO 1 (Louisiana State University, Louisiana, USA). These
bar detectors is a ∼ 3 m-long aluminum cylinder with the mass of (2.2− 2.3)× 103 kg,
and are operating at cryogenic temperatures to reduce thermal noise. The defect of
the bar detector is its narrow bandwidth in the sensitivity, which is ∼ ±20 Hz around
the resonant frequency of ∼ 900 Hz. Even at the resonant frequency, the sensitivity is
not significantly high. Therefore, in these days, the resonant bars are superseded by
interferometers in the sensitivity. The bar detectors will continue to operate, but they
are gradually loosing scientific interests (Burst GWs of supernovae etc. in a kHz band
still keep the interests of people.).

Ground-based interferometric detectors

The study of a laser-interferometric detector has been started in the 1970s, which was
∼ 10 years later from a resonant-bar detector. In the 1990s, interferometers with
the arm length of tens of meter were constructed and had been developed toward a

1It was announced in April 2007 that the ALLEGRO would soon cease operation.
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Figure 1.2: Schematic view of laser-interferometric GW detector (Fabry-Perot Michel-
son interferometer). All optics are suspended with thin wires.

kilometer-sided laser-interferometric detector, which mainly aims for the detection of
GW sources from astrophysical compact objects with a few or several solar masses, as
mentioned in the previous section. The sensitivity of the detector and the expected
GW targets are shown in Fig. 1.2. The first large-scale interferometer in the world for
GWs is TAMA300 [29], which located at Mitaka, Tokyo, Japan, and has two arms with
the length of 300 m extended in perpendicular directions. Nowadays, other three large-
scale interferometer, LIGO [30], VIRGO [31], GEO600 [32] are also constructed and
operating. In Table 1.1, the characters of each detector are tabulated. The sensitive
frequency range is from 10−104 Hz. The goal sensitivity of the first-generation detectors
is limited by seismic noise at lower frequencies, seismic noise at lower frequencies,
thermal noise at middle frequencies, shot noise at high frequencies.

There are two reasons why the interferometric GW detector is more popular than
resonant one today. For one reason, the advantage of the interferometers, compared
with the resonant bars, is that the interferometers have broad-frequency-band sensi-
tivity and can observe the waveform of GWs, though the resonant bars have narrow-
frequency-band sensitivity. For another reason, the interferometric-type is easy to
improve the sensitivity by extending the baseline, since the longer baseline produces
the larger GW signal without amplifyng the displacement noise of mirrors. In fact, the
best sensitivity of the interferometric detector (LIGO and VIRGO) is higher than that
of resonant detectors at all frequencies in the observation band.

Among the first-generation detectors (upper four interferometers in the Table 1.1),
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generation interferometer country arm length starting date
1st LIGO USA 4 km operating

VIRGO Italy and France 3 km operating
GEO600 Germany and UK 600 m operating
TAMA300 Japan 300 m operating

2nd Adv. LIGO USA, UK, and Germany 4 km 2014 -
Adv. VIRGO Italy and France 3 km 2014 -
AIGO Australia 5 km 2017 -
LCGT Japan 3 km 201x -

3rd ET Europe 10 km 202x -

Table 1.1: Current and planned large-scale interferometric detectors on the ground.
The design parameters and the starting date of the second- and third-generation in-
terferometers are not necessarily fixed and could be changed in the future.

LIGO and VIRGO have almost accomplished the goal sensitivity at the time in 2008.
However, the event rate 2 is much smaller than unity per a year. Therefore, the second
generation of the interferometric detectors, whose sensitivity is roughly ten times better
than the first generation, is needed to firmly detect GWs and to pioneer the GW
astronomy. Such detectors, which is currently planned and developed, are advanced
LIGO [33], advanced VIRGO [34], AIGO [35], and LCGT [36]. The characters of
each detector are listed at the lower half of Table 1.1, and the sensitivity is drawn in
Fig. 1.1, together with that of the first-generation interferometer. The advanced LIGO
and VIRGO are an upgraded version of current LIGO and VIRGO, respectively, while
AIGO and LCGT will be constructed at new places. The GW event rate is expected to
be a few or several in a year. In these detectors, the sensitivity is limited by quantum
noise in almost all frequencies, and the applied technique of quantum optics will be
essential. Thus, quantum optical techniques for the interferometric GW detectors have
been vigorously investigated and developed experimentally.

The project for the third-generation interferometer, Einstein Telescope (ET) [37],
has been formally started in Europe since 2008, after the budget for the design study
was approved. The investigation of the detector configuration is under way, aiming for
roughly 10 times better sensitivity than that of the second-generation interferometers.

Space-based interferometric detectors

In the frequency band of a ground-based detector, the rich GW sources are expected.
More massive object, such as intermediate (∼ 103 − 105 M⊙) and supermassive (∼
105 − M⊙) black holes, and the early stage of the evolution of the solar-mass compact
objects will be observed in a lower frequency band below 10 Hz. However, seismic dis-
turbances prevent the ground-based detectors from searching such objects. Therefore,
three space-based detectors are planned, aiming for low-frequency GW astronomy.

2The event rate depends on the GW sources and theoretical models that we consider. So, there is
still uncertainty of a factor or even of an order of the magnitude in the event rate.



7 1.3 Gravitational-wave detectors

interferometer country frequency band arm length starting
or institution date

LISA ESA and NASA 10−4 − 10−2 Hz 5 × 106 km 2018 -
(transponder-type)

BBO NASA 10−2 − 10 Hz 5 × 104 km 202x -
(transponder-type)

DECIGO Japan 10−2 − 10 Hz 1 × 103 km 2024 -
(FP-type)

Table 1.2: Planned interferometric detectors in space. DECIGO will use Fabry-Perot
cavity, not a transponder type of LISA and BBO. The finesse is 10 so that the effective
arm length is 104 km. The design parameters and the starting date are not fixed and
could be changed in the future.

The space-based interferometer, Laser Interferometer Space Antenna (LISA) [38],
was proposed by ESA in 1993 and is a joint program of ESA and NASA, which targets
GWs at 10−4 − 10−2 Hz. LISA is located at the place 20◦ behind the Earth in the
Heliocentric orbit, and consists of three spacecrafts apart by the distance of 5×106 km
each other, forming an equilateral triangle 3. The relative distance between spacecrafts
is measured by a laser interferometry with drag-free test masses in the spacerafts. The
target GW source for LISA is the binary and merger of super massive black holes at
cosmic distance up to the redshift z ∼ 20, extreme mass ratio inspirals, GWBs from
cosmic strings and electroweak phase transition. In the frequency range, there are
many resolved and unresolved galactic binaries composed of white dwarfs. To subtract
them, much effort is devoted. However, it would be an obstacle limiting the sensitivity.

The frequency range between LISA and the ground-based detectors, 10−2 − 10 Hz,
is also important range for science, because there are intermediate black holes and
compact binaries before moving into the observational band of the ground detectors. In
addition, no significant astrophysical foreground would exist there so that 10−2−10 Hz
is a good window for the inflationary GWB. At the frequencies, two space detectors
are proposed: DECi-hertz Interferometer Gravitational-wave Observatory (DECIGO)
[39] and Big-Bang Observer (BBO) [40]. In Table 1.2, the parameters are tabulated.

GW detectors at ultra-high frequencies

Important other frequency range especially for cosmology is an ultra-high frequency
band. The frequency range is defined and called in various ways in the literatures,
depending on the authors. We call the frequency range 10 kHz − 10 MHz very high
frequency (VHF), 10 MHz− 10 GHz ultra-high frequency (UHF), 10 GHz− super high
frequency (SHF). The generic term, high frequency (HF), describes the frequency range
above ∼ 10 Hz 4.

3Exactly speaking, one percent of the arm length changes during the annual orbiting.
4These definitions are not popular one and has not obtained the consensus, because it depends on

the frequencies, in which one is interested. Say, low frequencies is below ∼ 1−100Hz and high frequen-
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There is no astronomical GW source at VHF, UHF and SHF, since the object mass
has to be much less than ∼ 1M⊙ to produce GWs at the frequencies. The reason
why GWs at UHF is important is because GWs at ∼ 100 MHz corresponds to the
energy scale ∼ 1015 GeV in the early universe, during which inflation may occur, and
because, in some theoretical scenarios, the GW energy produced in the early universe
is much larger than that in the standard scenario. Furthermore, compact object with
cosmological motivation, such as primordial black holes produced by inhomogeneous
fluctuation in the early stage of universe and black strings in the braneworld scenario,
would emit UHF GWs. If the objects exist around the Earth, they can be detected
through GWs. Therefore, from GW detection at UHF, one can directly see traces of a
scenario in the early universe and obtain the implication in new physics.

Nevertheless, much effort has not been devoted into GW search at this frequencies.
Consequently, the direct constraint due to GW detector is so loose, though the indirect
constraint due to the big-bang nucleosynthesis has been obtained. This is because the
GW amplitude is much smaller at high frequencies than that at low frequencies, and
it makes the detection difficult. However, pioneering works are vital for future GW
astronomy and cosmology. At present, as far as I know, GW detectors are developed
with different methods by four groups: at INFN, Genova, Italy [41, 42], Birmingham
University, UK [43, 44, 45], Chongqing University, China [46, 47], NAO, Tokyo, Japan
[48, 49, 50].

1.4 Outline and notation of the thesis

This thesis is organized as follows:

Chapter 2

We briefly introduce the property of GWs and the principle of GW detection with laser
interferometer. Then, as for stochastic GWB, various assumption and fundamental
quantities are provided.

Chapter 3

We overview the creation of GWB in inflation and several other models in the early
universe. Such backgrounds motivate us to search physics in the early universe.

Chapter 4

This chapter is devoted to the current upper limit on GWB with indirect observations.
The limits are complementary to the direct search with interferometers.

cies is above ∼ 100Hz − 10 kHz for people working on the ground-based large-scale interferometers.
We call the terms for convenience.
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Chapter 5

In the former part of this chapter, we review cross-correlation analysis for GWB and
current tightest constraint from direct observation by LIGO. In the latter part, our
original work that searches for non-tensorial polarization mode of GW is described.
This work will be published as

A. Nishizawa, A. Taruya, S. Kawamura, and M. Sakagami, ”Searching for non-
tensorial polarizations of a gravitational-wave background with laser interferometers”,
in preparation.

Chapter 6

We turn our attention to GW search at ultra-high frequencies. The experiment with
interferometers has not been studied well in the past. Thus, first, we investigate the
optimal interferometer design and derive the cross-correlation sensitivity to GWB, as
described in

A. Nishizawa et al., ”Laser-interferometric detectors for gravitational wave back-
grounds at 100 MHz: Detector design and sensitivity”, Phys. Rev. D 77, 022002
(2008),

A. Nishizawa et al., ”Optimal location of two laser-interferometric detectors for
gravitational wave backgrounds at 100 MHz”, Class. Quantum Grav. 25, 225011
(2008).

Then, we give experimental results obtained by our group, based on

T. Akutsu et al., ”Search for a Stochastic Background of 100-MHz Gravitational
Waves with Laser Interferometers”, Phys. Rev. Lett. 101, 101101 (2008).

Chapter 7: Resonant speed meter

As the solution of displacement-amplified problem in a synchronous-recycling interfer-
ometer, we introduce a so-called resonant speed meter, which is a displacement noise-
canceled configuration based on a ring-shaped synchronous recycling interferometer,
proposed in

A. Nishizawa, S. Kawamura, and M. Sakagami, ”Resonant Speed Meter for
Gravitational-Wave Detection”, Phys. Rev. Lett. 101, 081101 (2008).

The remarkable feature of this interferometer is that, at certain frequencies,
gravitational-wave signals are amplified, while displacement noises are not. We also
show that the resonant speed meter works well for quantum noise. This work is pre-
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pared for a paper as

A. Nishizawa, S. Kawamura, and M. Sakagami, ”Quantum noise in a resonant speed
meter”, in preparation.

Chapter 8: Conclusions

This chapter is devoted to summarize this thesis and discuss the future work.

Notations

• Natural units
In this thesis, we use c = ~ = kB = 1. However, they are written explicitly in
some sections where is likely to be confused or at the place where it is easy to
understand.

• Planck mass
In this thesis, the reduced Planck mass

MPl = (8πG)−1/2 ≈ 2.436 × 1018 GeV

is used, instead of mPl = G−1/2 ≈ 1.221 × 1019 GeV.

• Tensors indices
We follow the rules of super- and subscrpts for the relativistic theory in a D-
dimensional spacetime:

greek alphabets for spacetime, µ, ν, α = 0, 1, 2, · · · , D,
roman alphabets for space, i, j, k = 1, 2, · · · , D.

• Convention of metrics
We follow the convention of the metric sign for a Minkowski spacetime:

ηµν = diag(−1, +1, +1, · · · , +1) .



Chapter 2

Stochastic gravitational-wave
background

2.1 Gravitational waves

2.1.1 Linearized Einstein equation

Einstein equation is given by

Gµν ≡ Rµν −
1

2
gµνR = 8πGTµν . (2.1)

Gµν is the Einstein tensor, and Tµν is the stress-energy tensor. Christoffel symbol,
Riemann curvature tensor, Ricci tensor, and scalar curvature are defined as

Γµ
νλ ≡ 1

2
gµα(gαν,λ + gαλ,ν − gνλ,α) ,

Rµ
ναβ ≡ Γµ

νβ,α − Γµ
να,β + Γµ

γαΓγ
νβ − Γµ

γβΓγ
να ,

Rµν ≡ Rα
µαν , (2.2)

R ≡ Rα
α . (2.3)

Let us consider gravitational waves propagating in a vacuum. The Einstein equation
can be written as

Gµν = 0 . (2.4)

Suppose that a metric tensor is slightly deviated from the background spacetime,

gµν = g(0)
µν + hµν , |hµν | ≪ 1 .

We use the superscript (0) for the zeroth order quantity and (1) for the first order
quantity with respect to hµν . Taking the first order of hµν , one can write Eqs. (2.1),

11
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(2.2) and (2.3) as

G(1)
µν = R(1)

µν − 1

2
g(0)

µν R(1) − 1

2
hµνR

(0) , (2.5)

R(1)
µν =

1

2

[
h α

ν ;αµ + h α
µ ;αν − h ;α

µν ;α − h;µν + R
(0)
νβ hβ

µ + R
(0)
µβhβ

ν

+
(
R

(0)
µβαν + R

(0)
νβαµ

)
hβα

]
, (2.6)

R(1) = hµ ;α
α ;µ − h;α

;α − hµνR(0)
µν , (2.7)

where the symbol ; denotes a covariant derivative, and h ≡ hµ
µ. Substituting Eqs. (2.6)

and (2.7) into Eq. (2.5), and using (2.4) and the fact R
(0)
µν = 0 and R(0) = 0 in the

vacuum, one can obtain

h α
ν ;αµ + h α

µ ;αν − h ;α
µν ;α − h;µ;ν − g(0)

µν (h α ;β
β ;α − h;α

;α) +
(
R

(0)
µβαν + R

(0)
νβαµ

)
hβα = 0 .

(2.8)

Now we define the traceless part of hµν ,

h̄µν ≡ hµν −
1

2
g(0)

µν h . (2.9)

Using the new definition, we can rewrite Eq. (2.8) as

h̄ ;α
µν ;α − h̄ α

ν ;αµ − h̄ α
µ ;αν + g(0)

µν h̄ α ;β
β ;α + 2R

(0)
µανβh̄αβ = 0 . (2.10)

In addition, to fix the degrees of gauge freedom, we impose the following conditions
(harmonic gauge conditions),

h̄ν
µ;ν = 0 . (2.11)

Then, Eq. (2.10) gives

h̄ ;α
µν ;α + 2R

(0)
µανβh̄αβ = 0 . (2.12)

The contribution of each term in the left-hand side of the equation can be estimated.
For the GW wavelength λ and the background curvature scale L, the first term is
O(λ−2) and the second term is O(L−2). Therefore, if λ ≪ L, the second term can be
ignored and Eq. 2.12 results in the sourceless wave equation of GWs,

¤h̄µν ≡ h̄ ;α
µν ;α = 0 . (2.13)

2.1.2 Gravitational waves

To investigate the components of h̄µν , we consider a plane GW propagating on the
background of a 4-dimensional spacetime with flar curvature,

h̄µν = Aµνe
ikαxα

. (2.14)
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Substituting this into the harmonic gauge conditions, Eq. (2.11), and the wave equation,
Eq. (2.13), we can obtain two conditions,

kνAµν = 0 , Aµνkρk
ρ = 0 , (2.15)

in order to be a solution of the wave equation. Here we used the fact that h̄µν is
traceless. The second condition is satisfied if kρk

ρ = 0. So, the GW has to propagate
along a null geodesic.

At Eq. (2.11), we have already imposed the gauge conditions, however, the gauge
freedom is not completely fixed yet. To see it, let us consider an infinitesimal gauge
transformation,

x′µ = xµ + ξµ . (2.16)

Then, the metric tensor is transformed as

g′
µν(x

γ + ξγ) = gαβ
∂xα

∂x′µ
∂xβ

∂x′ν

= (ηαβ + hαβ)
∂xα

∂x′µ
∂xβ

∂x′ν ,

and, to the first order in hµν and ξµ, it can be written as

g′
µν(x

γ) = g(0)
µν + (hµν − ξµ,ν − ξν,µ) .

So, hµν is transformed as
h′

µν = hµν − ξµ,ν − ξν,µ . (2.17)

Tracing Eq. (2.17) and using Eq. (2.9) give

h̄′ ρ
µ ,ρ = h̄ ρ

µ ,ρ − ξ ,ρ
µ ,ρ . (2.18)

Therefore, there remain the degrees of gauge freedom concerning ξµ. If the additional
conditions,

¤ξµ = 0 ,

is satisfied, Eq. (2.18) is consistent with the harmonic gauge conditions, and the gauge
is completely fixed.

In conclusions, h̄µν or Aµν is traceless by definition of Eq. (2.9), and transverse by
the first condition of Eq. (2.15). This gauge is a so-called transverse-traceless (TT)
gauge. For GW propagating in the z direction, the complex amplitude of the GW can
be written as

Aµν =


0 0 0 0
0 A+ A× 0
0 A× −A+ 0
0 0 0 0

 , (2.19)

where the degrees of freedom A+ and A×, which does not vanish by the gauge trans-
formation, are gravitational waves, and each polarization mode is called plus and cross
modes, respectively.
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2.1.3 Quadrupole nature of gravitational waves

To see the effect of GWs on test masses, let us consider the simple case that GW with
+ polarization is propagating on the background ηµν = diag(−1, 1, 1, 1) in z direction,

ds2 = −dt2 +
[
1 + h+(t − z)

]
dx2 +

[
1 − h+(t − z)

]
dy2 + dz2 , (2.20)

h+(t − z) = h+ cos[Ω(t − z)] , |h+| ≪ 1 ,

where Ω is the angular frequency of a GW.

Suppose that light pulse is emitted at the origin A and is received at the point
B on the surface of a sphere with the radius R0. Taking a polar coordinate, (x =
r sin θ cos φ, y = r sin θ sin φ, z = r cos θ), and setting ds2 = 0 for light, one can write
the metric, Eq. (2.20), as

dr = dt

[
1 − 1

2
h+ cos[Ω(t − r cos θ)] sin2 θ cos 2φ

]
. (2.21)

The time delay due to GWs vanishes when θ = 0 and is maximum when θ = π/2. This
is because GWs are transverse. Fixing θ = π/2 and integrating Eq. (2.21) from r = 0
to r = R0 give

R0 =

∫ t0+∆t(φ)

t0

(
1 − h+

2
cos Ωt cos 2φ

)
dt

= ∆t(φ) − h+

2Ω

[
sin[Ω{t0 + ∆t(φ)}] − sin Ωt0

]
cos 2φ . (2.22)

In the case when the wavelength of GWs is much larger than test mass separation (the
distance between the points A and B), ΩR0 ≪ 1, Eq. (2.22) can be written as

R(φ) ≡ c ∆t(φ) = R0

[
1 +

h+

2
cos Ωt0 cos 2φ

]
.

Thus, the strain induced by GWs with + polarization is proportional to cos 2φ. As for
× polarization, the strain is proportional to sin 2φ. In Fig. 2.1, the effects on test masses
are shown for GWs propagating vertical to the plane of a paper. Both polarization
modes are related by 45 degrees rotation. While, each polarization mode is symmetric
with respect to 180 degrees rotation. This indicates that gravitons have spin 2.

2.2 Stochastic gravitational-wave backgrounds

In this section, assumptions and physical quantities to describe stochastic GWB are
defined, and common features involving GWB are discussed.
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Figure 2.1: Influences of gravitational waves on test masses for each GW polarization
mode: + mode (left) and × mode (right).
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2.2.1 Assumptions

A GWB is the superposition of a number of gravitational waves with random phases,
which exists as a background in the universe. At generic point X⃗, the gravitational
metric perturbations in the TT gauge are given by

h(t, X⃗) =
∑

A

∫
S2

dΩ̂

∫ ∞

−∞
df h̃A(f, Ω̂) e2πif(t−Ω̂·X⃗) eA(Ω̂) , (2.23)

where Ω̂ is a unit vector directed at GW propagation and h̃A(f, Ω̂) is the Fourier
transform of GW amplitude with polarizations A = +,×. Note that h̃A(−f, Ω̂) =
h̃∗

A(f, Ω̂). Polarizarion tensors eA(Ω̂), are defined as

e+(Ω̂) ≡ m̂ ⊗ m̂ − n̂ ⊗ n̂,

e×(Ω̂) ≡ m̂ ⊗ n̂ + n̂ ⊗ m̂ ,
(2.24)

where the unit vectors m̂, n̂ are orthogonal to Ω̂ and to each other. See Fig. 5.8. The
polarizarion tensors satisfy eA(Ω̂)eA′(Ω̂) = 2δAA′ , A,A′ = +,×.

The followings are usually assumed about stochastic GWB, (i) isotropic, (ii) un-
polarized, (iii) stationary, and (iv) Gaussian [51]. (i) It is observationally known that
CMB is highly isotropic [52, 53]. However, this might not be true because a large
number of unresolved GW sources, for example, white dwarf binaries and neutron star
binaries, would exist as foreground in the direction of the galactic plane, or one can
consider non-standard cosmological scenarios in which GWB is not necessarily isotropic
as well as CMB. So, anisotropic GWB search in data analysis is important, but here
we assume GWB is isotropic for the simplest case. (ii) The assumption ”unpolarized”
GWB is natural since there is no strong evidence to believe that GWB has preferred
polarization, plus or cross (right- or left-handed), though it is possible that inflationary
background can be polarized with the gravitational Chern-Simons term that might be
derived from string theory [54, 55]. (iii) The statistical property of GWB does not
change during the observation. This seems to be valid since the age of the universe is
far much longer than the observation time. (iv) The assumption that the amplitude
of GWB has Gaussian distribution is justified by the central limit theorem, because
GWB was created by a large number of independent gravitational wave sources. These
assumptions (i) - (iv) are expressed by

〈h̃∗
A(f, Ω̂)h̃A′(f ′, Ω̂′)〉 = δ(f − f ′)

1

4π
δ2(Ω̂, Ω̂′)δAA′

1

2
Sh(f) , (2.25)

where δ2(Ω̂, Ω̂′) ≡ δ(φ− φ′)δ(cos θ − cos θ′) and 〈· · · 〉 denotes ensemble average. Sh(f)
is the one-sided power spectral density defined by Eq. (2.25), and satisfies Sh(−f) =
Sh(f).

2.2.2 Energy density

The amount of GWB is defined by the energy density per logarithmic frequency bin
normalized by the critical energy density of the universe, that is,

Ωgw(f) ≡ 1

ρc

dρgw

d ln f
, (2.26)
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where ρc = 3M2
PlH

2
0 and H0 is the Hubble constant. It is useful to represent the energy

density with the form h2
0 Ωgw(f) and H0 = 100 h0 km s−1 Mpc−1 because H0 still has

observational uncertainty. Ωgw(f) is related to Sh(f) as follows. The energy density of
GW is given by [56, 57, 6]

T gw
00 = ρgw =

M2
Pl

4
〈ḣabḣ

ab〉λ ,

where 〈· · · 〉λ denotes the average over several GW wavelengths, in which the subscript
λ is fixed so as not to be confused with the ensemble average. Substituting Eq. (2.23)
and using Eq. (2.25), we obtain

ρgw = M2
Pl

∫ f=∞

f=0

d(ln f)f(2πf)2Sh(f) ,

dρgw

d ln f
= 4π2M2

Plf
3Sh(f) .

Therefore, from Eq. (2.26), Ωgw is related to the power spectral density Sh(f) as

Ωgw(f) =

(
4π2

3H2
0

)
f3Sh(f) . (2.27)

2.2.3 Characteristic amplitude

A dimensionless characteristic GW amplitude can be defined, using Eqs. (2.23) and
(2.25), by

〈hab(t)h
ab(t)〉 = 2

∫ ∞

−∞
dfSh(f) (2.28)

= 4

∫ f=∞

f=0

d(ln f)fSh(f) = 2

∫ f=∞

f=0

d(ln f)h2
c(f) ,

that is,
h2

c(f) = 2fSh(f) . (2.29)

Combining with Eq. (2.27), one can obtain the relation

Ωgw(f) =

(
2π2

3H2
0

)
f 2h2

c(f) . (2.30)

Dimensionless quantity, the tensor power spectrum

PT (k) ≡ 2h2
c(k) , (2.31)

is often used in cosmology, where the factor 2 results from two polarization modes. In
terms of PT (k), the energy density of GWB is given by

Ωgw(k) =
k2

12H2
0

PT (k) . (2.32)
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2.2.4 Number density of gravitons

The energy density Ωgw(f) can also be expressed in terms of gravitons. Suppose the

number of gravitons per polarization mode per unit volume in phase space, n(x⃗, k⃗).
For a isotropic stochastic GWB, the number density only depends on frequency f and
can be written as n(x⃗, k⃗) = nf . So,

ρgw = 2

∫
d3k

(2π)3
k nf = 16π2

∫ ∞

0

d(ln f)f 4nf

dρgw

d(ln f)
= 16π2nff

4

By definition of Eq. (2.26), one can obtain

h2
0Ωgw(f) ≈ 2.3 × 10−6

(
nf

1042

)(
f

1 Hz

)4

. (2.33)

2.2.5 Decoupling of gravitons

CMB photons are decoupled from other components of universe at the redshift z ∼ 1100
and carry information of the universe at the epoch to us. Similarly, gravitons are
decoupled far early in the history of the universe, because the gravitational interaction
is much weaker than the electromagnetic interaction. Let us estimate the time of the
decoupling of gravitons. In general, the rate of interaction is given by Γ = nσ|v|,
where n is the number density of particles, σ is cross section, and |v| is mean velocity
of the particles. For gravitons, |v|=1 and σ ∼ M−4

Pl T 2 by dimensional analysis, then,
Γ ∼ M−4

Pl T 5. On the other hand, the rate of expansion of the universe is given by
the Friedmann equation, and is H2 ∼ M−2

Pl T 4 for relativistic particles. Therefore,
the decoupling time of gravitons is at Γ ∼ H, that is, T ∼ MPl ∼ 1019 GeV. This
means that gravitons are in thermal equilibrium only at the epoch of Planck scale
and decoupled below Planck scale. This is the reason why GWB is a powerful tool
to directly prove the very early universe and a particle theory beyond the standard
model.

Is there thermal relic GWB on the analogy of CMB? One can infer the temperature
of GWB using entropy conservation. Entropy per unit volume is given by

s =
4

3
σSBT 3 , (2.34)

where σSB is Stefan-Boltzmann constant. Since the entropy is conserved in comoving
volume, it follows

gs(T )T 3a3 = constant ,

gs(T ) ≡
∑

i=boson

gi

(
Ti

T

)3

+
7

8

∑
i=fermion

gi

(
Ti

T

)3

,

where a is a scale factor, and gs(T ) is the number of entropy degrees of freedom, which
is gs(T0) = 3.91 at present and gs(T∗) = 106.75 at energy scales above 300 GeV if we
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assume that the particle standard model holds. Thus, the temperature of thermal relic
GWB at present is

Tg =

(
3.91

106.75

)1/3

Tγ ≈ 0.9 K . (2.35)

Here the temperature of CMB photon at present Tγ = 2.725 K is used. However, such
a thermal spectrum is unlikely to survive because (i) it is diluted if inflation occurs at
relatively low energy scales, (ii) it is unclear whether one can apply low energy physics
to Planck era or not, (iii) non-thermal gravitons are produced by various mechanisms
though the history of the universe and might hide the thermal spectrum.

2.2.6 Characteristic frequency

GWB observed today is produced at certain epoch of the universe and is red-shifted
by cosmic expansion. Thus, the frequency of the GWB and the energy scale of the
universe can be related.

Suppose that GWB with the frequency f∗ is generated when the temperature of
the universe is T∗ by some mechanisms. Using entropy conservation, Eq. (2.34), one
can calculate the frequency today,

f = f∗

(
a∗

a0

)
≈ 8.00 × 10−14

(
f∗

1 Hz

)(
106.75

gs∗

)1/3 (
1 GeV

T∗

)
Hz . (2.36)

a∗ and a0 are the scale factors at T = T∗ and at present. The frequency f∗ depends on
the generation mechanism of GWB, however, at least, it should be generated within the
horizon of the universe. So, we will write the characteristic scale as λ∗ = ϵH−1

∗ , (0 <
ϵ < 1). The Hubble parameter is given by the Friedmann equation for relativistic
particles,

H2
∗ =

π2g∗T
4
∗

90M2
Pl

,

g∗ ≡
∑

i=boson

gi

(
Ti

T

)4

+
7

8

∑
i=fermion

gi

(
Ti

T

)4

.

Substituting f∗ into Eq. (2.36), one can obtain

f = 1.71 × 10−7ϵ−1

(
T∗

1GeV

) ( g∗
106.75

)1/6

Hz , (2.37)

or,

T∗ = 5.85 × 106 ϵ

(
f

1Hz

) ( g∗
106.75

)−1/6

GeV .

Therefore, if the GWB is generated at the horizon scale (ϵ = 1), one can prove physics
in the early universe at T∗ > 1 TeV by investigating GWB with the frequencies f >
0.1 mHz. This is the reason why GWB at high frequencies is so important for cosmology.





Chapter 3

Creation of cosmological GWB

.

3.1 Inflation

Hot big-bang cosmology has several problems [58]: the horizon problem (Why is our
universe so homogeneous and isotropic over causally disconnected regions in the early
age of the universe?), the flatness problem (Why is our universe considerably flat?), and
the seed for cosmological structures (Small inhomogeneity must be needed to create
galaxies, stars, and clusters.). To overcome these problems, the theory of inflation, the
idea that the universe underwent a brief period of rapid accelerating expansion, was
originally proposed by [16, 17, 18, 19].

Einstein equation with a perfect fluid gives the Friedmann equation,

H2 =

(
ȧ

a

)2

=
1

3M2
Pl

ρ , (3.1)

and the acceleration equaiton,

ä

a
= − 1

6M2
Pl

(ρ + 3p) , (3.2)

where ”dot” denotes derivatives with respect to time t and MPl ≡ (8πG)−1/2. From
Eq. (3.2), the expansion of the universe is accelerated if the condition ρ+3p < 0 holds.
One of Such fluids is a scalar field. The stress-energy tensor of a scalar field φ is given
by

Tµν = φ,µφ,ν − ηµνL , (3.3)

L = −1

2
φ,αφ,α − V (φ) .

L is Lagrangian density of the scalar field, and V is the potential. Here flat spacetime,
ηµν = diag(−1, +1, +1, +1), is assumed. In the homogeneous and isotropic universe,

21
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from Eq. (3.3), energy density ρ and pressure p can be simply written as

ρ =
1

2
φ̇2 + V (φ) ,

p =
1

2
φ̇2 − V (φ) .

The evolution of the field φ can be derived using T µ
ν ;µ = 0 and the equation of motion

is given by
φ̈ + 3Hφ̇ + V ′ = 0 , (3.4)

where the prime denotes the derivative with respect to φ.
If the scalar field potential changes slowly, namely,

ϵV (φ) ≡ M2
Pl

2

(
V ′

V

)2

≪ 1 ,
∣∣ηV (φ)

∣∣ ≡ M2
Pl

∣∣∣∣V ′′

V

∣∣∣∣ ≪ 1 , (3.5)

or, consistently, ∣∣∣∣ φ̇2

V

∣∣∣∣ ≪ 1 ,

∣∣∣∣ φ̈

Hφ̇

∣∣∣∣ ≪ 1 ,

the equation of state p ≈ −ρ is satisfied and hence the universe is accelerated. The
latter condition states that the scalar field slowly rolls down the hill of a potential.
Therefore, the above condition and parameters ϵV and ηV are called slow-roll condition
and slow-roll parameters 1, respectively [59]. In the slow-roll approximation, Eq. (3.4)
can be approximated to 3Hφ̇ ≈ −V ′. The Eq. (3.1) can also be approximated to

ȧ

a
≈

√
1

3M2
Pl

V ≈ constant . (3.6)

Then, the solution is

a(t) ∝ exp

[√
V

3M2
Pl

t

]
, (3.7)

and the acceleration expansion can be obtained. Such a scalar field is called inflaton.

3.2 GWB creation in de-Sitter inflation

Gravitational waves are an inevitable consequence of all inflationary models, being
created in the same manner as the density perturbation [60, 61, 62, 63]. In the con-
text of quantum field theory in a curved spacetime, which is more strict description,

1Slow-roll parameters in Hamilton-Jacobi formulation are defined as

ϵ ≡ 2MPl

(
H ′(φ)
H(φ)

)2

, η ≡ 2MPl
H ′′(φ)
H(φ)

.

To distinguish from them, the subscripts V are fixed to the slow-roll parameters defined by the inflaton
potential.



23 3.2 GWB creation in de-Sitter inflation

gravitational-wave production can be interpreted as the amplification of vacuum fluc-
tuations by cosmic expansion (gravitational particle creation) [64, 65, 66].

We assume a spatially flat universe, and that the background is homogeneous and
isotropic, as well as the previous section. If there are gravitational waves, the spacetime
metric can be described by the Friedmann-Robertson-Walker (FRW) metric with tensor
perturbations,

ds2 = a(τ)2[−dτ 2 + (δij + hij)dxidxj] .

Here the conformal time τ is defined by dτ = dt/a(t). The tensor perturbation can be
written in a form with a time-dependent function φA

k (τ) and a spatial plane-wave part,

h(τ,x) = M−1
Pl

∑
A=+,×

∑
k

φA
k (τ)eik·xeA(Ω̂) ,

where it is summed with respect to a GW polarization A and a comoving wave-number
vector k, and a unit vector Ω̂ ≡ k/|k| is defined. From the linearized Einstein equation
(2.13), the time evolution of the tensor perturbation can be given by

d2φk

dτ 2
+ 2Hdφk

dτ
+ k2φk = 0 , (3.8)

where

H ≡ 1

a

da

dτ
.

This equation is the same equation as for a massless scalar field, and can be solved
if a(τ) is given explicitly as a function of τ . Here we consider de-Sitter phase in the
early universe, followed by the radiation-dominated (RD) and matter-dominated (MD)
phases. We do not consider the dark energy-dominated phase, since it would dominate
the universe only after the redshift z . 1 and hardly affects a broad spectrum of GWB
2.

First we start with a qualitative look at the shape of a GWB spectrum. From
Eq. (3.8) by writing φk(τ) as h(τ),

d2h

dτ 2
+ 2Hdh

dτ
+ k2h = 0 , (3.9)

is obtained. When k ≪ H, the solution is

h = constant . for k ≪ H

On the other hand, when k ≫ H, substituting h(τ) = A(τ) exp[iB(τ)] into Eq. (3.9)
and keeping the leading terms, we can obtain a WKB solution,

h ∝ 1

a
exp[±ikτ ] for k ≫ H .

2However, the dark-energy domination indeed affects the frequencies feq etc. through the cos-
mological parameters determined in the universe with the dark-energy dominated phase. Thus, in
this section, we take the dark-energy domination into account indirectly through the cosmological
parameters.
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Therefore, GW amplitude is frozen out after the horizon exit during inflation, and is
damped after the re-entry inside of the horizon during the RD or MD phases. GW
amplitude after the horizon re-entry can be written using the amplitude hini and the
scale factor a(t∗) at the time of the horizon exit,

|hobs| ≈ |hini|
a(t∗)

a(t0)
, (3.10)

where t∗ and t0 are the time at the horizon exit and at present, respectively.
The frequency of GWs seen today is

2πf =
k

a(t0)
=

a(t∗)

a(t0)
H(t∗) . (3.11)

For the modes re-entering inside the horizon during the RD phase, using Eqs. (3.10)
and (3.11), and H2(t∗) ∝ a−4(t∗), we obtain |hobs| ∝ f−1 , and for the modes re-
entering inside the horizon during the MD phase, using H2(t∗) ∝ a−3(t∗), we obtain
|hobs| ∝ f−2 . Substituting the these relations into Eq. (2.30) gives the frequency
dependence of Ωgw(f),

Ωgw(f) =
2π2

3H2
0

f2|hobs|2 ∝
{

constant (feq < f)
f−2 (f < feq)

,

where feq is the frequency corresponding to the matter-radiation equality.
Next, we treat GWB creation in a quantitative way, using a quantum field theory.

In a particle point of view (graviton), gravitational waves can be written as

h(τ,x) = M−1
Pl

∑
A=+,×

∫
d3k

(2π)3
√

2k

[
aA(k)φk(τ)eik·x + a†

A(k)φ∗
k(τ)e−ik·x] eA(Ω̂) ,

where aA(k) and a†
A(k) are the creation and annihilation operators. Vacuum states in

each phase of the universe are defined using the annihilation operators by

aI
A|0〉I = 0 ,

aR
A|0〉R = 0 ,

aM
A |0〉M = 0 .

The subscripts I, R, M represent the inflation, RD, MD, respectively. Transforming φk

to ψk = aφk in Eq. (3.8), the following equation can be obtained 3 ,

d2ψk

dτ 2
+

[
k2 − 1

a

d2a

dτ 2

]
ψk = 0 . (3.12)

Hereafter we assume that the universe is isotropic and replace the wave number vector
k with k. Cosmic expansions in the de-Sitter phase, followed by the RD and MD

3The variable a is used for both the scale factors and the annihilation operator. Be careful so as
not to be confused.
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phases as a function of τ , are given by

aI(τ) = − 1

Hτ
, (Inflation : −∞ < τ < τ1) , (3.13)

aR(τ) =
1

Hτ 2
1

(τ − 2τ1) , (RD : τ1 < τ < τeq) , (3.14)

aM(τ) =
(τ + τeq − 4τ1)

2

4Hτ 2
1 (τeq − 2τ1)

, (MD : τeq < τ < τ0) . (3.15)

In the above expressions, the scale factor a(τ) and its first derivative are smoothly
continued at a phase transition of cosmic expansion. H is the Hubble parameter at the
de-Sitter inflationary epoch, and has a constant value. Note that the sign of the con-
formal time is τ1 < 0 and τeq > 0 so that a(τ) is positive and a monotonously growing
function. The equation (3.12) can be analytically solved by substituting Eqs. (3.13) -
(3.15) and gives solutions for positive frequency modes,

ψI
k(kτ) = −

(π

2

)1/2

(kτ)1/2H
(2)
3/2(kτ) , (−∞ < τ < τ1) , (3.16)

ψR
k (kτ) = e−ikτ , (τ1 < τ < τeq) , (3.17)

ψM
k (kτ) = −

(π

2

)1/2

{k(τ + s)}1/2H
(2)
3/2[k(τ + s)] , (τeq < τ < τ0) (3.18)

where s ≡ τeq − 4τ1, and H
(2)
3/2 is the Hankel function of the second kind. Overall

coefficients are chosen to give ψk → e−ikτ at the subhorizon limit, kτ → ∞. The above
expressions Eqs. (3.16) - (3.18) can be reduced, by using an explicit form of the Hankel

function H
(2)
3/2, to simpler forms,

ψI
k(kτ) =

[
1 − i

kτ

]
e−ikτ , (3.19)

ψR
k (kτ) = e−ikτ , (3.20)

ψM
k (kτ) =

[
1 − i

k(τ + s)

]
e−ik(τ+s) . (3.21)

These functions are the exact solutions for Eq. (3.12). However, no continuity be-
tween each expanding epoch is imposed. The continuity condition is given by Bogol-
ubov transformation (Detailed explanation is given in Appendix A.) [67],

ψI
k = αIR

k ψR
k + βIR

k (ψR
k )∗ , (3.22)

ψR
k = αRM

k ψM
k + βRM

k (ψM
k )∗ . (3.23)

Substituting Eqs. (3.19) - (3.21) into Eqs. (3.22) and (3.23), we obtain the Bogolubov
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coefficients,

αIR
k = 1 − i

kτ1

− 1

2k2τ 2
1

, (3.24)

βIR
k =

1

2k2τ 2
1

e−2ikτ1 , (3.25)

αRM
k =

[
1 +

i

2k(τeq − 2τ1)
− 1

8k2(τeq − 2τ1)2

]
eiks , (3.26)

βRM
k = − 1

8k2(τeq − 2τ1)2
e−ik(2τeq+s) . (3.27)

What is needed to obtain a present GWB spectrum is the Bogolubov coefficients from
the inflationary phase to the MD phase. It is determined by the relation,

ψI
k = αtotal

k ψM
k + βtotal

k (ψM
k )∗ . (3.28)

Therefore, substituting Eqs. (3.22) and (3.23) into Eq. (3.28), we find the total Bogol-
ubov coefficients,(

αtotal
k βtotal

k

βtotal ∗
k αtotal ∗

k

)
=

(
αIR

k βIR
k

βIR
k ∗ αIR ∗

k

)(
αRM

k βRM
k

βRM ∗
k αRM ∗

k

)
, (3.29)

together with Eqs. (3.24) - (3.27).

We assume the universe is in a vacuum state during the inflation phase. From
Eqs. (3.29), (A.4), and (A.6), the number of created gravitons is given by

nk = |βtotal
k |2

= |βIR
k |2 + 2|βRM

k |2
(
|βIR

k |2 +
1

2

)
+ 2 Re

[
αIR

k βIR ∗
k αRM

k βRM
k

]
. (3.30)

This equation clearly show that some gravitons are created from vacuum fluctuations at
the inflation-RD transition, and that the created gravitons are subsequently amplified
at the RD-MD transition.

To evaluate Eq. (3.30), let us consider four cases shown in Fig. 3.1, with respect
to the epochs when the fluctuations come into the cosmic horizon. As mentioned in
Appendix A, particle creation does not occur at the mode within the horizon. Hence,
we do not consider the case 1. We do not consider case 4 either, as it is not observable
today. Consequently, what is important is case 2 (horizon re-entry during RD) and
case 3 (horizon re-entry during MD) 4

4The number density of gravitons can be derived without the classification of horizon re-entry. In
that case, a continuous solution is

nk ≈ 1
4

(
f1

f

)4[
1 +

1
4

(
feq

f

)2]
.

is obtained.
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Figure 3.1: Schematic view of horizon exit and re-entry.

• Case 2: horizon re-entry during RD.
The wavelength of a mode is larger than the Hubble horizon at the inflation-RD.
The condition k ≪ H(τ1) is y1 ≡ k|τ1| ≪ 1. Then, the wavelength of a mode
is smaller than the Hubble horizon at the RD-MD transition. The condition
k ≫ H(τeq) is y1 ≡ kτeq ≫ 1. The equation (3.30) being substituted Eqs. (3.24)
- (3.27) and taken a leading-order term, gives

nk ≈ 1

4y4
1

.

y1 can be related to a physical frequency at present f by

y1 = k|τ1| =
2πf

H

a0

a1

=
f

f1

, (3.31)

f1 ≡ H

2π

a1

a0

=
H

2π(1 + zeq)

(
t1
teq

)1/2

,

where Eq. (3.13) is used at the second equal sign of the upper equation, a0 = 1 is
the scale factor at present, and zeq is the redshift at the radiation-matter equality.
Using t1 ≈ 1/(2H) and the values 5,

1 + zeq ≈ 2.41 × 104 Ωmh2
0, teq ≈ 3.23 × 1010 (Ωmh2

0)
−2 sec , (3.32)

where Ωm is the energy-density parameter of matter in the universe today, we
obtain

f1 ≈ 5.01 × 108

(
H

10−4MPl

)1/2

Hz . (3.33)

5Dark-energy domination is not considered here, and neutrinos are assumed to be relativistic.
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Note that f1 does not depend on Ωmh2
0. The frequency f1 is a cutoff frequency

above which no GWB is produced. Therefore, the number density of gravitons
for the modes horizon re-entering during RD is

nk ≈ 1

4

(
f1

f

)4

.

• Case 3: horizon re-entry during MD.
The conditions for the wavelength of a mode are y1 ≪ 1 and yeq ≪ 1. The
equation (3.30) with leading-order terms is

nk ≈ 1

4y4
1

[
1

4(yeq + 2y1)2

]
.

(yeq + 2y1) can be written as

yeq + 2y1 = k(τeq − 2τ1) = kaeqHτ 2
1 = −aeq

a1

kτ1 =
aeq

a1

f

f1

=
f

feq

,

feq ≡ H(teq)

2π

aeq

a0

.

Here we used Eqs. (3.13), (3.14), and (3.31). Using H(teq) = 4(
√

2 − 1)/3teq [58]
and Eq. (3.32) gives

feq ≈ 1.13 × 10−16Ωmh2
0 Hz .

Therefore, the number density of gravitons for the modes horizon re-entering
during MD is

nk ≈ 1

16

(
f1

f

)4(
feq

f

)2

.

From (2.33), we finally obtain the GWB energy density

h2
0Ωgw(f) ≈


3.6 × 10−14

(
H

10−4MPl

)2

, (feq < f < f1) ,

3.6 × 10−14

(
H

10−4MPl

)2 (
feq

f

)2

, (f0 < f < feq) ,

(3.34)

where f0 = H0/h0 = 3.24×10−18 Hz. The GWB spectrum is shown in Fig. 3.2 with H =
2.7×10−5MPl. The reason for this choice of the inflation energy scale is that a stringent
limit on the GWB spectrum of de-Sitter inflation comes from CMB observations, as
described in the next section.

3.3 GWB creation in slow-roll inflation

The Hubble parameter H is constant during de-Sitter inflation, however, is not constant
but slowly changes in slow-roll inflation, depending on the shape of the potential.
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Figure 3.2: GWB spectrum produced by de-Sitter inflation. The enegy scale of inflation
is selected as H = 2.7 × 10−5MPl.

Consequently, the spectrum of the produced gravitons is also modified. The evolution
of the Hubble parameter is governed by the equation of motion [68, 69],

φ̇ = −2M2
PlH

′(φ) ,[
H ′(φ)

]2
=

3

2M2
Pl

H2(φ) − 1

2M4
Pl

V (φ) , (3.35)

which can be derived from Eqs. (3.1) and (3.4) by regarding the Hubble parameter as
a function of φ and assuming that φ varies monotonically with time. The Eq. (3.35)
is called the Hamilton-Jacobi equation. The dynamics of the Hubble parameter is
quantified by the generalized Hubble slow-roll parameters [70],

ϵ(φ) ≡ 2M2
Pl

[
H ′(φ)

H(φ)

]2

,

ℓλH ≡ (2M2
Pl)

ℓ (H ′)ℓ−1

Hℓ

d(ℓ+1)H

dφ(ℓ+1)
, (ℓ ≥ 1) .

We can identify the first and second slow-roll parameters 1λH and 2λH with η and ξ2

in the literature [71] 6.

The primordial power spectra of scalar and tensor fluctuations at the end of inflation

6Note that, in some papers, the squared index 2 is often omitted in the definition, though it is of
the second order.
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are written by

PS(k) = PS(k0)

(
k

k0

)nS−1+(αS/2) ln(k/k0)

,

PT (k) = PT (k0)

(
k

k0

)nT +(αT /2) ln(k/k0)

, (3.36)

where k0 is a fiducial pivot scale observed at present in CMB, and is given by k0 =
0.002 Mpc−1, which corresponds to f0, is conventionally used. The spectral indices nS

and nT up to the second order in the slow-roll parameters 7 are given by [72],

nS − 1 ≡ d lnPS(k)

d ln k

∣∣∣∣
αS→0

≈ 2η − 4ϵ − 2(1 + C)ϵ2 − 1

2
(3 − 5C)ϵη +

1

2
(3 − C)ξ2 ,

nT ≡ d lnPT (k)

d ln k

∣∣∣∣
αT→0

≈ −2ϵ − (3 + C)ϵ2 + (1 + C)ϵη , (3.37)

and the derivatives [73, 74] are

αS ≡ d2 lnPS(k)

d ln k 2
≈ 16ϵη − 24ϵ2 − 2ξ2 ,

αT ≡ d2 lnPT (k)

d ln k 2
≈ 4ϵη − 4ϵ2 ,

where C ≡ 4(ln 2+γ)−5 ≈ 0.08145 and γ ≈ 0.57722 is the Euler-Mascheroni constant.
The tensor-to-scalar ratio is defined by

r ≡ PT

PS

∣∣∣∣
k=k0

≈ 16ϵ
[
1 + 2C(ϵ − η)

]
.

Note that nS, nT , and r are evaluated at the scale k0 = 0.002 Mpc−1. From Eq. (3.37),
the tensor spectral index nT is negative, since ϵ is positively defined in Eq. (3.5). This
means that the slow-roll inflation predicts smaller GWB spectrum than that of the
de-Sitter inflation at high frequencies.

In Eq. (2.32), the energy density of the GWB is related to the tensor power spectrum
at the present day PT (k) as

Ωgw(k) =
k2

12H2
0

PT (k) . (3.38)

7The slow-roll parameters here are related to those in Hamilton-Jacobi formulation like ϵ = ϵV and
η = ηV − ϵV , to the lowest order.
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The PT (k) can be related to the primordial tensor power spectrum PT (k) by a transfer
function T (k),

PT (k) = T 2(k)PT (k) . (3.39)

By numerically integrating Eq. (3.8), the transfer function is found to be well approxi-
mated by the form [75]

T (k) =
3j1(kτ0)

kτ0

√
1.0 + 1.34

(
k

keq

)
+ 2.50

(
k

keq

)2

. (3.40)

where keq = 0.073 Ωmh2
0 Mpc−1 is the wave number corresponding to the Hubble radius

at the time of the matter-radiation equality. Combining Eqs. (3.36), (3.38), (3.39), and
(3.40) gives

Ωgw(k) =
3[j1(kτ0)]

2

4H2
0τ

2
0

PT (k0)

(
k

k0

)nT
[
1.0 + 1.34

(
k

keq

)
+ 2.50

(
k

keq

)2]
,

and, particularly for k ≫ keq,

Ωgw(k) ≈ 15

16H2
0k

2
eqτ

4
0

PT (k0)

(
k

k0

)nT

. (3.41)

Comparing Eq. (3.41) with Eq. (3.34), one can obtain the GW energy spectrum

h2
0Ωgw(f) ≈


3.6 × 10−14

(
H∗

10−4MPl

)2 (
f

f0

)nT

, (feq < f < f1) ,

3.6 × 10−14

(
H∗

10−4MPl

)2 (
f

f0

)nT
(

feq

f

)2

, (f0 < f < feq) ,

(3.42)
where H∗ is the Hubble parameter when the scale k0 crosses the horizon during the
inflation. In Eq. (3.42), the extra factor (f/f0)

nT shows that the slow-roll inflation does
not produce larger GW spectrum than that of the de-Sitter inflation. Examples of the
spectrum are shown in Fig. 3.3.

The GW spectrum is often written using the tensor-to-scalar ratio r [76]. The
amplitude of PT (k0) in Eq. (3.41) has not yet been observed in CMB, but the amplitude
of PS(k0) has been determined well [15],

PS(k0) ≈ 2.457 × 10−9 .

Using the cosmological parameters determined by 5th year WMAP data, type Ia
supernovae and baryon acoustic oscillations [15], one finds keq = 0.010 Mpc−1 and
τ0 = 1.44 × 104 Mpc. Therefore, Eq. (3.41) can be rewritten as

h2
0Ωgw(f) = 4.81 × 10−15 r

(
f

f0

)nT

,

for f ≫ feq. A constraint on r has been obtained by the observations of 5th year
WMAP, type Ia supernovae and baryon acoustic oscillations, and the result is r < 0.54
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(95% C.L.) [15]. This is a conservative limit, in that the nonzero running nS is allowed
in the analysis, where a prior on nS that has no running can impose a tighter limit on
r, but in general inflation models, the running of nS would be nonzero. Consequently,
the upper limit of the GW energy spectrum due to slow-roll inflation is

h2
0Ωgw(f) ≤ 2.60 × 10−15 for f > feq .

In terms of H∗, this limit can be translated into H∗ ≤ 2.7 × 10−5MPl.

Figure 3.3: GWB spectrum produced by slow-roll inflations. From the top on the left
side, the curves are plotted for the tensor-to-scalar ratios r = 0.5 (red), 10−2 (green),
10−4 (blue). For r = 0.5 (red), the tensor spectral index is selected as nT = −0.05
(solid), −0.10 (dotted), −0.15 (dashed) with αT = 0. For r = 10−2 (green), the
running spectral index is selected as αT = 0 (solid), −10−3 (dotted), +10−3 (dashed).
The spectra of slow-roll inflations never exceed that of the de-Sitter inflation (black).

3.4 GWB creation in quintessential inflation

3.4.1 Quintessential inflation

Peebles and Vilenkin presented a model where the idea of a post-inflationary phase
stiffer than radiation is dynamically realized [77]. One of motivations of this model is
to explain two accelerations of the universe during the inflation and the current epoch,
with a single scalar field like the quintessence field [78, 79]. The potential of the scalar
field (inflaton) φ is given by

V (φ) =


λ(φ4 + M4) , (φ < 0) ,

λM8

φ4 + M4
, (0 < φ)
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The λ is a normalization factor and can be determined by COBE normalization as
λ ≈ 1×10−14. M is a characteristic energy parameter. If we want the energy density in
φ to be compatible with the present total energy (Ωφ ∼ 0.7) and moderately accelerate
the universe, it is required to take M ∼ 106 GeV. The potential is similar to that of
a chaotic inflation in the range φ < M , and is a slowly decaying function in φ > M .
Note that this scenario can be implemented with any other inflationary potential for
φ < 0, and the chaotic potential is one of illustrative examples.

The inflaton starts at φ < −MPl and rolls toward zero. The inflaton ends slow-
rolling at φ ∼ MPl, then the inflaton evolves toward a phase where the kinetic energy
of the inflaton dominates. We will call the phase a kinetic energy-dominated (KD)
phase 8. In the phase, from Eqs. (3.1) and (3.4), the energy density of the inflaton ρφ

and the scale factor evolve as

ρφ(τ) = 3H2
1M

2
Pl

(
a1

a

)6

,

where the Hubble parameter H1 at the end of the inflation is

H1 =
1

a1τ1

∼
√

λMPl .

Since ρ ∝ a−3(1+w) for a barotropic fluid with the equation of state p = wρ, the kinetic
energy-dominated scalar field behaves like the fluid with w = 1, which is stiffer than
radiation.

At the end of the inflation, not only gravitons but also massless scalar fields are
amplified [67, 80]. Indeed there are various scalar, vector, and tensor degrees of free-
dom during the inflationary phase. However, free massless spinor and gauge fields are
conformally invariant, so their contributions to the total energy density are suppressed.
Suppose that during the inflationary phase the number of massless scalar fields is Ns.
As well as gravitons, the amplified energy density has been calculated in the case of
nearly conformal coupling scalar fields [80], arbitrary coupling scalar fields [81], and
arbitrary power-law expansion after inflation [82]. In all cases, the result is

ρr(τ) = R H4
1

(
a1

a

)4

, R =
Ns∑
i=1

Ri ∼ 10−2Ns . (3.43)

Ri is the contribution of each massless scalar degrees of freedom to the energy density
of the amplified fluctuations and it is of the order of 10−2. As indicated in [77],
the thermalization of the massless scalar fields occurs immediately after the particle
creation, when ath/a1 ∼ (102 − 103) N

−1/2
s .

Since ρr decays more slowly than ρφ, a radiation-dominated phase follows the kinetic
energy-dominated phase. The onset of the radiation-dominated phase is computed from
ρr(τr) ∼ ρφ(τr),

a1

ar

∼
√

R

3

H1

MPl

∼
√

λR .

8It is also called deflation or kinetion in other references.
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By red-shifting the horizon sclale at τr up to now, we obtain

fr =
Hr

2π

(
ar

a0

)
=

H1

2π

(
a1

ar

)3(
ar

a0

)
≈ 3.65 × 10−3R3/4

(
λ

10−14

)(
gs(τ0)

gs(τth)

)1/3

Hz ,

where gs(τth) is the number of degrees of freedom after the thermalization of the mass-
less scalar fields. It is also important to compute the frequency f1 corresponds to the
horizon scale at the end of inflation, which is given by

f1 =
H1

2π

(
a1

a0

)
=

H1

2π

(
a1

ar

)(
ar

a0

)
≈ 3.65 × 1011R−1/4

(
gs(τ0)

gs(τth)

)1/3

Hz .

The frequency corresponding to the matter-radiation equality is the same as that in
de-Sitter inflation, and is given by feq ≈ 1.13 × 10−16 Ωmh2

0 Hz.

3.4.2 GWB spectrum

A GWB energy spectrum in the quintessential inflation has been calculated by the
method of particle creation in a curved spacetime, as described in Sec. 3.2 [82, 83]. In
quintessential inflation scenario, the smoothly continued solutions of cosmic expansion
are

aI(τ) = − 1

Hτ
, (Inflation : −∞ < τ < τ1) ,

aK(τ) =
1

Hτ1

√
3τ1 − 2τ

τ1

, (KD : τ1 < τ < τr) ,

aR(τ) = − τ + τr − 3τ1

Hτ1

√
τ1(3τ1 − 2τr)

, (RD : τr < τ < τeq) ,

aM(τ) =
(τ + τeq + 2τr − 6τ1)

2

4Hτ1(3τ1 − τr − τeq)
√

τ1(3τ1 − 2τr)
, (MD : τeq < τ < τ0) .

Here we assume that the inflation is de-Sitter inflation. Given the cosmic expansions,
one can solve Eq. (3.12) and obtain solutions for positive frequency modes in each
phase,

ψI
k(kτ) =

(π

2

)1/2

(kτ)1/2H
(2)
3/2(kτ) , (−∞ < τ < τ1) ,

ψK
k (kτ) =

(π

2

)1/2

{k(τ + p)}1/2H
(2)
0 [k(τ + p)] , (τ1 < τ < τr) ,

ψR
k (kτ) = e−ikτ , (τr < τ < τeq) ,

ψM
k (kτ) =

(π

2

)1/2

{k(τ + q)}1/2H
(2)
3/2[k(τ + q)] , (τeq < τ < τ0) ,
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where p ≡ −3τ1/2 and q ≡ τeq + 2τr − 6τ1. The normalizaiton of the mode functions
is chosen to be ψk → e−ikτ when kτ → ∞.

Following procedures are the same as those in Sec. 3.2. The amount of created
gravitons is given by the Bogolubov coefficients connecting from the inflationary phase
to the matter-dominated phase today. The Bogolubov transformations are defined by

ψI
k = αIK

k ψK
k + βIK

k ψK ∗
k ,

ψK
k = αKR

k ψR
k + βKR

k ψR ∗
k ,

ψR
k = αRM

k ψM
k + βRM

k ψM ∗
k ,

and the total Bogolubov coefficients are given by(
αtotal

k βtotal
k

βtotal ∗
k αtotal ∗

k

)
=

(
αIK

k βIK
k

βIK ∗
k αIK ∗

k

)(
αKR

k βKR
k

βKR ∗
k αKR ∗

k

)(
αRM

k βRM
k

βRM ∗
k αRM ∗

k

)
.

We assume the universe is in a vacuum state during the inflation phase. The number
of created gravitons is given by nk = |βtotal

k |2, and the approximated GWB-energy
spectrum obtained in [83] is

Ωgw(f) =



K

(
f

fr

)[
ln

(
f

f1

)]2

, (fr < f < f1) ,

π

4
K

[
ln

(
fr

f1

)]2

, (feq < f < fr) ,

π

4
K

(
feq

f

)2[
ln

(
fr

f1

)]2

, (f0 < f < feq) ,

where

K ≡ 81

16π3

(
gs(τ0)

gs(τth)

)1/3

λ Ωγ ≈ 1.34 × 10−20 h−2
0

(
λ

10−14

)
.

Here we used gs(τ0) = 3.91 and gs(τth) = 106.75 in the standard model of particle
physics. In supersymmetric extension of the standard model, the number of degrees
of freedom is doubled because of supersymmetric partners. However, the correction to
the GWB spectrum is small, and only a factor 21/3 ≈ 1.26 appears.

In quintessential inflationary models, the energy density of GWB has a peak at high
frequencies and becomes much larger than in the case of ordinary inflationary models.
The location of the peak, fpeak = e−2f1 ∝ R−1/4, weakly depends on R, but does not
depend on λ. The height of the peak is given by

h2
0Ωgw(fpeak) ≈ 0.725 × 10−6R−1 , (3.44)

and does not depend on λ either. Therefore, the peak cannot move one order of
magnitude and is firmly localized around 100 GHz.
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Figure 3.4: GWB spectrum produced by quintessential inflation for a fixed value of
λ = 10−14. Other parameters are selected as gs(τ0) = 3.91, gs(τth) = 106.75, and
h2

0Ωm = 0.1369 [15]. Three curves corresponds to R = 0.15 (red, solid curve), R = 1
(green, dotted curve), and R = 10 (blue, dashed curve).

The constraint on the spectrum comes from not CMB limit but big-bang nucleosyn-
thesis limit. Using Eqs. (4.7) and (3.44), one can obtain 0.13 . R. From Eq. (3.43),
this means that the number of massless scalar degrees of freedom Ns has to exceed 13.
The GWB spectra with three values of R are plotted in Fig. 3.4.

Note that such a GWB spectrum with large peak at high frequencies is not a specific
feature appearing only in a quintessential inflation model, but is a common feature
in scenarios with KD epoch of scalar fields. The gravitational reheating process we
considered above is an inefficient reheating process and is likely to result in a long KD
phase. Another reheating process, a so-called instant preheating has been proposed
[84, 85, 86]. Instant reheating is much more efficient than gravitational reheating, and
completes the reheating process earlier. Consequently, the duration of the KD phase is
shorter, and the peak on the GWB spectrum become smaller. The dependences of the
spectrum on the reheating mechanisms have been investigated by Tashiro et al. [87].
Therefore, the GWB at high frequencies is important because it brings us information
regarding the reheating mechanism and thermal history of the universe after inflation.

3.5 Pre-big-bang model

Pre-big-bang model is a cosmological model motivated by the string theory and was
originally proposed by Gasperini and Veneziano [88, 89]. In this model, the initial state
of the universe is assumed to be the string perturbative vacuum with the weak coupling
and low curvature. Then, the perturbative approach is well justified. The low-energy
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string effective action at the lowest order in the derivatives and in eφ is given by [88, 89]

S ∼
∫

d4x
√
−g

[
e−φ(R + ∂µφ ∂µφ) − V (φ)

]
, (3.45)

where φ is the dilaton field. The dilaton potential V (φ) is due to nonperturbative
effects and, thus, can be neglected in the low-energy perturbative regime. There is a
phase, called a dilaton-dominated (DD) phase, that the kinetic energy of the dilaton
field drives the universe through an superinflationary evolution (which is an accelerated
expansion in the string frame, or accelerated contraction in the Einstein frame). The
spacetime curvature increases in the DD phase , eventually reaching the string scale. In
this string phase, the low-energy string effective action is not valid, and the perturbative
treatment breaks down. Although the transition between the pre-big-bang (DD) phase
and the post-big-bang phase is not well understood, some models, which can partially
described it, have been proposed. The de-Sitter phase with linearly growing dilaton is
considered to be the representative of a typical solution in the large curvature regime,
where non-perturbative corrections are expected to avoid the big-bang singularity and
to stop the dilaton field to grow. Then, it is assumed, at the end of the stringy phase,
that the standard RD phase with the constant dilaton field is restored. As we will see
later, MD phase does not much contribute to the GWB spectrum and is not important
for the computation. So, we do not consider MD phase here.

An exact GWB spectrum in the pre-big-bang model has derived in [90]. In a
homogeneous, isotropic, and spatially flat background, for simplicity, the equation of
motion derived from the action in Eq. (3.45), gives the solutions of the evolving universe
in the string frame,

a(τ) = − 1

Hsτs

(
τ − (1 − α)τs

ατs

)−α

, φ(τ) = φs − γ ln

[
τ − (1 − α)τs

ατs

]
,

for the DD phase (−∞ < τ < τs),

a(τ) = − 1

Hsτ
, φ(τ) = φs − 2β ln

(
τ

τs

)
,

for the stringy phase (τs < τ < τ1),

a(τ) =
1

Hsτ 2
1

(τ − 2τ1) , φ = φ0 ,

for the RD phase (τ1 < τ < τr). The conformal time τs < 0, τ1 < 0, and τr > 0 are
defined at the time of the DD-string, string-RD, RD-MD phase transition, respectively.
The solutions are connected so that the evolution is continuous across each phase
transition. The value α and γ are constants and given by α = 1/(1+

√
3) and γ =

√
3,

in the absence of external matter [91]. In stringy phase, the Hubble parameter H
and the derivative of the dilaton field φ̇ is set to be constants so that it produces the
de-Sitter expansion.

The model has several parameters: α, β, γ, Hs, τs, and τ1. Among these parameters,
α and γ concerns the solution in DD phase, but, they are fixed, as mentioned above, if
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we assume the absence of external matter. β and Hs are parameters that determines
the growth of the dilaton and the energy scale during the stringy phase, respectively.
However, the natural value of Hs is considered to be Hs ≈ 1/λs ≈ 0.03 MPl due to
the string length λs in the string theory [90]. The parameters τs and τ1 concerns the
duration of the string era, and determines the phase when the fluctuation with a certain
wave number crosses outside the horizon (the horizon crossing occurs at kτ ∼ 1). The
corresponding frequency today is given by redshifting the horizon scale at the time.
From Eq. (3.33), it follows

f1 = 6.13 × 1010

(
Hs

0.03 MPl

)(
t1
λs

)1/2

Hz .

On the other hand, τs or fs are totally unknown, even as an order of magnitude. Since
|τ1| < |τs|, fs is in the range 0 < fs < f1. Therefore, we fix the model parameters
α and γ at the values above, and Hs and τ1 at the typical values Hs ≈ 0.03 MPl and
f1 = 6.13 × 1010 Hz. The unknown parameters are β and fs.

The equation for the Fourier modes of metric tensor perturbations is [92]

d2ψk

dτ 2
+

[
k2 − V (τ)

]
ψk = 0 ,

V (τ) =
1

a
eφ/2 d2

dτ 2

(
a e−φ/2

)
.

The procedures to compute the created gravitons is the same as those for the de-Sitter
and quintessential inflations in the previous sections. The exact GWB spectrum in the
pre-big-bang model is obtained in [90] as

Ωgw(f) = b(µ)
2π3f 4

s

H2
0M

2
Pl

(
f1

fs

)2µ+1 (
f

fs

)5−2µ

×
∣∣∣∣H(2)

0

(
αf

fs

)
J ′

µ

(
f

fs

)
+ H

(2)
1

(
αf

fs

)
Jµ

(
f

fs

)
− (1 − α)

2α

fs

f
H

(2)
0

(
αf

fs

)
Jµ

(
f

fs

)∣∣∣∣2 , (3.46)

with

b(µ) ≡ α

48
22µ(2µ − 1)2Γ2(µ) , µ ≡ 1

2
|2β − 3| .

In the spectrum, the new parameter µ explicitly appears instead of β. Thus, the shape
of the spectrum is completely determined by two parameters µ and fs.

For f ≪ fs ≪ f1, the expression (3.46) can be expanded as

Ωgw(f) ≈ (2µ − 1)2

192µ2α

2π3f 4
s

H2
0M

2
Pl

(
f1

fs

)2µ+1 (
f

fs

)3

×

[
(2µα − 1 + α)2 +

4

π2

{
(2µα − 1 + α)

(
ln

αf

2fs

+ γE

)
− 2

}2
]

,(3.47)
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where γE ≈ 0.5772 is the Euler constant. On the other hand, for fs ≪ f ≪ f1,
Eq. (3.46) can be approximated to

Ωgw(f) ≈ 4b(µ)

π2α

2π3f 4
s

H2
0M

2
Pl

(
f

f1

)3−2µ

. (3.48)

It is important to stress that in the high frequency limit the unknown parameter fs can-
cels. The approximated expressions (3.47) and (3.48) give the frequency dependence
of the GWB spectrum, f 3 at low frequencies (the factor (ln f)2 is a small correction.),
and f3−2µ at high frequencies, which reproduce the frequency dependence of the ap-
proximated spectrum first found in [93, 94, 95]. At the frequency f = f1, there is a
sharp cutoff in the spectrum because the fluctuation never cross the horizon above the
frequencies, and its amplification is suppressed.

In Fig. 7.8, the GWB spectra are plotted for three parameter sets (µ, fs) = (1.5,
100 Hz), (1.3, 100 Hz), (1.4, 105 Hz). We select µ in the range 0 < µ < 3/2, because
the case with µ > 3/2 has large energy at lower frequency than f1 and easily violates
the observational bounds due to big-bang nucleosynthesis or GW detectors (LIGO)
(see, Fig. 4.2 in Chap. 4). On the other hand, fs is allowed to have much lower values
than our choices of fs in Fig. 3.5, because the spectrum rapidly decreases as f 3 at
the frequencies f < fs, and the observational limits due to pulsar timing and CMB
can be easily avoided. So, the GWB spectrum can be extended toward much lower
frequencies, unless it violates the pulsar-timing limit. While, for this reason, MD phase
is unimportant for GWB spectrum in the pre-big-bang model.

The most stringent limit comes from those at high frequencies. Therefore, the pre-
big-bang model is significantly interesting for GW experiments at high frequencies.
Advanced detectors will be able to search a part of a parameter space of the pre-big-
bang model, and would be a test of the string theory. The observational data of 4th
science run of LIGO have already begun to bound the model parameters, though the
limit is still very weak [96].

3.6 Other production mechanisms

Preheating after inflation

At the end of inflation, the process by which the energy density driving inflation was
converted into the matter and radiation we observe today, is called reheating. The
first stage of the conversion, preheating, is known to be violent and accompanies rapid
growth of inhomogeneities by parametric resonance. Subsequently, the large concentra-
tions of energy density in bubble structures collide, and generate a significant fraction
of energy in the form of gravitational waves. Then, the bubbles are dissipated through
turbulences, and are finally thermalized. The process also produces gravitational waves.
The computation of a GWB in the process is quite complicated, nonlinear problem,
and needs a numerical simulation. Such a GWB in chaotic inflation has first been
examined by Khlebnikov and Tkachev [97], and recently has been reanalyzed more ac-
curately by Easther et al. [98, 99]. The GWB in hybrid inflation has been computed by
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Figure 3.5: GWB spectrum produced in the minimal pre-bing-bang model with the
fixed values of Hs ≈ 0.03 MPl and f1 = 6.13 × 1010 Hz.

Garcia-Bellido et al. [100, 101]. In both cases of inflations, the predicted GWB energy
density is h2

0Ωgw ∼ 10−10, localized at the frequencies 107 − 109 Hz on the spectrum
9, depending on the energy scale the preheating occurs. Thus, the GWB from the
preheating open a new window for searching for unknown physics in the early universe.

Phase transition

In the early universe, the restored symmetry is broken at a certain temperature. For
example, one of first-order phase transitions from false vacuum to true vacuum might
be electroweak symmetry breaking, though it is not known yet whether the electroweak
phase transition is the first-order or not. If the first-order phase transitions occurred,
explosive thermal bubbles by the release of potential energy are generated, then collide,
and form turbulent plasma. In the case, a GWB spectrum with characteristic peaks
is produced via the bubble collisions [102, 103] and the turbulence [104, 105], which is
similar to the preheating, and could produce larger spectrum than that due to inflation.
The detectability of the GWB has been discussed in the LISA band by Nicolis [106],
and in the higher frequency band up to ∼ 100 Hz by Grojean and Servant [107]. The
energy density is, at most, Ωgw ∼ 10−10 at the peak of the spectrum, being independent
of the frequency band. If the first-order phase transitions occurred at the temperature
T ∼ 100 GeV, the peak frequency of the GWB corresponds to the frequency range of
LISA, according to Eq. (2.37). If the transitions occurred at the higher temperature,
say, T ∼ 107 GeV, advanced LIGO might detect the GWB.

9The generation of the GWB at the frequencies, say, ∼ 1 − 100Hz, is also possible, though the
amount of the produced energy is relatively small.
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Cosmic strings

Cosmic strings were topological defects which may be formed during phase transitions
in the early universe [108]. Cosmic superstrings are produced in certain string theory.
A cosmological network of oscillating string loops generates a stochastic GWB [109,
110, 111]. The spectrum is characterized by three parameters: the string tension (mass
per unit length) Gµ, the string reconnection probability p, and the parameter ϵ related
to the string loop size, where G is the gravitational constant. In the most cases, broad
GWB spectra are predicted in the frequency range from 10−12 Hz to 106 Hz, though
the bump of the GWB spectrum depends on ϵ. For relatively small ϵ, the maximal
amplitude could reach the big-bang nucleosynthesis bound, which is described in the
next chapter. The most-recent theoretical estimate of the upper limit on the parameters
has been discussed by Siemens et al. [112]. The large volume of the parameter space
can be complementarily explored by the ground- and space-based GW detectors and
the pulsar timing.





Chapter 4

Observational constraints on GWB

As reviewed in Chap. 3, inflation creates a GWB spectrum broadly ranging in frequen-
cies ∼ 10−18 - 109 Hz. The shape of the spectrum reflects inflation potentials and phase
transitions, predicted in extended theories of high-energy physics. Therefore, it is very
important to obtain constraints on the GWB spectrum not at a particular frequency
but several frequencies much different one another. In this chapter, we will see how
various observations impose the limits on the amount of GWB. At the end of this
chapter, we summarize observational constraints on GWB and the predicted spectra
of stochastic GWBs in Fig. 4.2.

4.1 Big-bang nucleosynthesis limit

Big-bang nucleosynthesis (BBN) admirably predicts the abundance of light-elements
(H, D, 3He, 4He, 7Li) in the universe currently observed. The abundance depends on
two parameters: a baryon-to-photon ratio τ and effective degrees of freedom of particles
at the temperature ∼ 1 MeV, g∗ = g(T ∼ 1 MeV). These parameters are strongly
constrained by observations. Therefore, the energy density of GWs can not be much
larger not so as to impair the predictions of the light-element abundances. Tightest
limit can be obtained by the abundance of 4He, which is determined by the ratio of the
number density of neutrons to protons available at the beginning of the nucleosynthesis,(

nn

np

)
≈ exp

(
−Q

Tf

)
, Q ≡ mn − mp ≈ 1.3 MeV .

The ratio significantly depends on the freezing temperature Tf that neutrons decouple
from an weak interaction with protons.

The freezing temperature can be estimated from a balance between the rate of
cosmic expansion and of the weak interaction, which is the same argument as that in
Sec. 2.2.5. The rate of expansion of the universe is given by

H2 =
1

3M2
Pl

ρ =
π2

90M2
Pl

g∗T
4 ,

43
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for relativistic particles, where g∗ is defined as

g∗ ≡
∑

i=boson

gi

(
Ti

T

)4

+
7

8

∑
i=fermion

gi

(
Ti

T

)4

. (4.1)

In the standard model of a particle theory, relativistic particles at T∗ ≈ 1 MeV are a
photon, an electron and positron, and three species of neutrinos (Nν = 3): γ, e±, ν, ν̄.
Then, g∗ = 43/3. If there would exist extra particles, g∗ increases. So, conventionally,
extra degrees of freedom are included into the species of neutrinos and are defined by
the quantity N eff

ν , which is generally not an integer. Therefore, the degrees of freedom
(4.1) is

g∗(N
eff
ν ) = 2 +

7

8
(4 + 2N eff

ν ) =
43

4
+

7

8
(N eff

ν − 3) . (4.2)

On the other hand, the weak interaction can be approximated by the Fermi in-
teraction if the energy scale considered is low enough compared to the mass of weak
bosons, 80 − 90 GeV. Since the nucleosynthesis occurs at the energy scale around
1 MeV, the cross section is given by σ ∼ G2

FT 2, where the Fermi constant is GF =
1.166 × 10−5 GeV−2 (This is really appropriate in the limit T ≫ Q. But we will use it
for simplicity.). Using particle velocities |v| ∼ 1 and the number density n ∼ T 3, one
can obtain the rate of weak interaction Γ ∼ G2

FT 5.
Consequently, the condition Γ ∼ H gives

G2
FT 5

f ≈
( g∗

90

)1/2 π T 2
f

MPl

,

that is,

Tf ∝ g1/6
∗ .

If g∗ increases, the cosmic expansion at that time become rapid, and Tf rises. This
follows the increase of neutron abundance available at the time of freeze-out. Then,
more 4He is produced. However, another parameter of the BBN, τ also affects the
amount of 4He: lower τ leads to small amount of 4He. Thus, we need to know both the
upper limit of the 4He abundance and the lower limit of τ in order to constrain g∗ or
N eff

ν . According to [113], although there are some astronomical uncertainty after the
primordial production of light elements due to the BBN, a conservative limit N eff

ν ≤ 4
is obtained.

From Eqs. (4.1) and (4.2), the energy density of gravitons has to be(
ρgw

ργ

)
BBN

=

(
Tgw

T

)4

BBN

≤ 7

8
(N eff

ν − 3) . (4.3)

This quantity should be translated to the energy density today. Entropy conservation
in a comoving volume, as well as the discussion in Sec. 2.2.5, gives the relation(

ρgw

ργ

)
0

=

(
ρgw

ργ

)
BBN

(
gs(T0)

gs(1 MeV)

)4/3

, (4.4)
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where gs(T0) = 3.91 and gs(1 MeV) = 10.75 1. Combining Eqs. (4.3) and (4.4), we
obtain (

ρgw

ργ

)
0

≤ 0.227 (N eff
ν − 3) . (4.5)

In the above equation, ρgw is an integrated energy density over frequencies. Using

ρgw =

∫
d(ln f)

dρgw(f)

d ln f
,

the observed value of ργ0, and Eq. (2.26) gives∫ fmax

fmin

d(ln f) h2
0Ωgw(f) ≤ 5.6 × 10−6 (N eff

ν − 3) . (4.6)

The choice of the upper and lower cutoff frequencies is discussed in [114]. The fre-
quency fmin corresponds to the horizon scale at the time of the BBN, and fmin =
fBBN ∼ 10−10 Hz, because GWs whose wavelength is larger than the horizon scale do
not contribute as radiation. As for fmax, it would be taken to be fmax = f1 ∼ 109 Hz
for an inflationary GWB and fmax = fPl ∼ 1043 Hz for a general situation.

Adopting N eff
ν ≤ 4 and assuming that the spectrum can be regarded as flat in a

frequency range ∆ ln f ∼ 1, we obtain

h2
0Ωgw(f) ≤ 5.6 × 10−6 , at 10−10 Hz . f . fmax . (4.7)

Note that this limit is only valid for the GWB present at the time of the BBN and
cannot be applied to GWB produced after that by astrophysical sources or some other
processes.

4.2 CMB limit

Gravitational waves contribute to temperature fluctuations of CMB today. The ampli-
tude of the fluctuations cannot exceed that of current observations. Consequently, the
amplitude of GWB has to be limited. As described in Sec. 3.3, 5th year WMAP data
combined with type Ia supernovae and baryon acoustic oscillation data tightly limits
the inflationary GWB energy spectrum in broad frequency ranges. However, this limit
can be derived, assuming that the tensor spectral index has a negative index of the
tensor mode, nT < 0. In general, nT could be positive. Therefore, the CMB limit
derived in Sec. 3.3 is only valid at the pivot scale k0 = 0.002 Mpc−1 and gives

h2
0Ωgw(k0) ≤ 5.93 × 10−14 at k0 = 0.002 Mpc−1 . (4.8)

On the other hand, Seljak et al. [22] has analyzed cosmological parameters with
WMAP, SDSS galaxy clustering and SDSS Lyα forest data, taking the pivot scale at
kpivot = 0.05 Mpc−1. They have obtained a constraint r < 0.45 (95% C.L.), allowing

1We assumed that relativistic particles are γ, e±, ν, ν̄ at T = 1MeV, and are γ, ν, ν̄ at T = T0.
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a running spectral index of a scalar mode. Then, the constraint on GWB energy
spectrum is

h2
0Ωgw(kpivot) ≤ 3.41 × 10−15 at kpivot = 0.05 Mpc−1 . (4.9)

Assuming that no steep peak exists on GWB energy spectrum between k0 and kpivot,
we can interpolate the CMB limits, Eqs. (4.8) and (4.9), and obtain the limit between
f0 = 3.24 × 10−18 Hz and fpivot = 8.10 × 10−17 Hz.

Another limit to GWB has been obtained by CMB and galaxy observations [115].
GWB with frequencies & 1015 Hz contributes to the radiation density of the universe at
the time of decoupling of CMB, and affects on the expansion rate. It also affects on the
growth of perturbations at later times. As a result, CMB power spectrum and matter
spectrum today would be changed. This concept is similar to the constraint to GWB
due to BBN. However, the advantage is that the limit can be extended to the lower
frequencies than that of BBN. The frequency corresponds to wavelengths comparable
to the comoving horizon at CMB decoupling.

The excess energy of radiation at the time of CMB decoupling is constrained by
current observations in terms of effective neutrino degrees of freedom at the time of
decoupling of CMB N eff

ν (tdec). Then, N eff
ν (tdec) is translated into the limit to Ωgw. In

[115], the authors carried out likelihood analyses, using the constraints from CMB,
galaxy surveys, and the Lyα forest, and assuming that the number of neutrino degrees
of freedom (not including extra degrees of freedom) is Nν = 3.04 and that the neutrino
masses are free to vary. For GWB produced with homogeneous initial conditions (in
inflation, pre-big-bang or ekpyrotic scenario) 2, they have obtained

h2
0Ωgw(f) ≤ 8.4 × 10−6 at f & 10−15 Hz (95% C.L.) ,

in a frequency range ∆ ln f ∼ 1. The lower end of frequencies that the limit can be ap-
plied is taken as 10−15 Hz. This is a conservative choice, because the gravitational-wave
wavelength must be within the horizon at the time of slightly before recombination.
The CMB limit is comparable to the big-bang nucleosynthesis limit.

4.3 Pulsar-timing limit

Pulsars are rapidly rotating compact objects, which are considered to be formed by
the supernovae of massive stars. The pulsars emit pulses with periods considerably
stable in time. Particularly, the periods of millisecond pulsars are extremely stable,
and has the time derivatives of the periods Ω̇ ∼ 10−19 sec sec−1 [116]. For instance,
the observations of the first millisecond pulsar discovered, B1937+21, after 9 year of
data, give a period of 1.557 806 468 819 794 5 ± 0.000 000 000 000 000 4 msec, which is
comparable to the accuracy of atomic clocks.

One can take advantage of the stability of pulsars to test general relativity. From the
observation of the change in the revolution period of B1931+16 (Hulse-Taylar binary
pulsar), general relativity has been tested at a level of 1%, and the indirect evidence

2For adiabatic initial conditions, a limit at 95 % C.L. of h2
0Ωgw(f) ≤ 4.0 × 10−5 is obtained.
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of the existence of GWs has been obtained [3, 4]. Such highly accurate clocks can also
be used for the direct detection of GWs.

4.3.1 Limit from spinning pulsars

Since the period of pulsars is extremely stable, one can detect the influence of gravi-
tational waves on the pulses by monitoring the change of pulse arrival times. In other
words, pulsar timing can be regarded as a gravitational-wave detector with a very long
arm.

Suppose that pulses are emitted at a pulsar at the time t0 and received at the
Earth at the time t1, and that a GW is propagating in the direction of z axis with
the polarization along x axis. The coordinates is shown in Fig. 4.1, where L is the
distance between the Earth and the pulsar, and θ is the angle between the direction of
the pulsar from the Earth and the direction the GW propagates. The change of arrival
times observed by the observer on the Earth can be written as [117, 118],

∆ν(t1)

ν(t0)
= −1

2
(1 − cos θ)[h(t1) − h(t0 − L cos θ)] ,

in frequency shifts, or, equivalently,

∆t(t1) = −1

2
(1 − cos θ)

∫ L(1+cos θ)

0

h(t0 − ξ)dξ ,

in time residuals.
The residual times in pulse arrival times are obtained by differentiating between

observed arrival times and the arrival times predicted with timing models (for the
review, see [116]). The timing model is written in a Taylor-expanded form,

φ(τ) = φ0 + (τ − τ0) Ω0 +
1

2
(τ − τ0)

2 Ω̇0 + . . . , (4.10)

where τ is the proper time of the pulsar, τ0 is the fiducial time, φ0 is the phase at
τ0, Ω0 and Ω̇0 are the pulse period and the derivative at τ0. The proper time τ in
Eq. (4.10) is related to the time on the Earth by including various corrections on the
light path from the pulsar to the Earth: relativistic effects in the solar system and
around the pulsar, revolution and peculiar motions of the Earth, dispersion measures,
etc.. In addition, the timing model has plural parameters intrinsic to an individual
pulsar, such as pulsar’s pulse frequency, its first derivative, astrometric, and binary
parameters. These parameters are fitted so that the residual times have a zero-mean
Gaussian distribution after subtracting the predicted arrival times from the observed
one. If a systematic error is found in the residual, it will be the contributions from
GWs.

Denoting errors in the pulse arrival time ϵ and observation time T , one can estimate
the sensitivity to GWs as

hc(f∗) ∼
ϵ

T
∼ ϵf∗ ,
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Figure 4.1: Doppler tracking.

where f∗ is the frequency given by the observation time. If no GW signal would find
in the residual data, the limit on hc is translated to the limit on Ωgw according to
Eq. (2.30). More detailed analysis of 7 years data of PSR B1855+09 by Kaspi et al.
[119] gives

h2
0Ωgw(f∗) < 6 × 10−8, (95% C.L.) ,

where f∗ = 1/7yr ≈ 4.5 × 10−9 Hz. Since hc ∝ T−1 ∝ f and h2
0Ωgw ∝ f 2h2

c , the limit
on h2

0Ωgw for f > f∗ is

h2
0Ωgw(f) < 6 × 10−8

(
f

f∗

)4

, (95% C.L.) .

No constraint can be obtained for f < f∗, because the systematic residuals are removed
by the parameter fitting.

Although the above limit results from the time residual of a single millisecond
pulsar, combining multiple pulsars provides us a powerful method that can remove
systematic errors, because the time residuals of the pulsars include identical noise
sources due to proper motion of the Earth, systematic errors of clocks, etc., and they
are correlated. Recent discovery of multiple millisecond pulsars allows such an analysis.
Consequently, the sensitivity to a GWB can also be improved.

More stringent limit will be placed soon by Parkes Pulsar Timing Array (PPTA)
project [120], which started in February 2004 as a collaborative effort between the
ATNF, Swinburne University of Technology, the University of Brownsville, Texas. The
project aims to observe 20 millisecond pulsars with an RMS timing residual of 100 nsec
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over 5 years. According to Hobbs [120], the limit on a GWB of h2
0Ωgw < 5 × 10−10

can be achieved after the 5 year observation. In the future, the Square-Kilometre-
Array (SKA) [121] is planned by an international collaboration. SKA will be a radio
telescope with a collecting area that will exceed that of existing telescopes by a factor
of a hundred or so. Due to its outstanding sensitivity, sky and frequency coverage, SKA
will discover about 20,000 pulsars in our galaxy, including more than 1,000 millisecond
pulsars. Therefore, the sensitivity to a GWB of h2

0Ωgw . 3 × 10−13 would be reached
[121].

Recently, a technique to detect GWB by looking for correlations between pulsar
observations was developed by Jenet et al. [122], and they found a slightly different
limit on a GWB with almost the same data set as the previous studies. Using the data
set with data spans ∼ 20 yr for PSR B1855+09 and ∼ 2− 4 yr for seven other pulsars,
they obtained the limits on h2

0Ωgw with flat spectrum [123],

h2
0Ωgw(f) < 2.0 × 10−8 ,

at the frequencies 1/1 yr, 1/8 yr, and 1/20 yr. The threshold of the detection is defined
so that detection rate is 95% and false alarm rate is 0.1%. If the full observation data
of PPTA (20 millisecond pulsars with an RMS timing residual of 100 nsec over 5 years)
will be available, the limit will be h2

0Ωgw(f) < 9.1 × 10−11 at the frequencies 1/1 yr,
1/8 yr, and 1/20 yr.

4.3.2 Limit from binary pulsars

Another important limit comes from pulsars in binary systems. The orbit of binary
pulsars is predicted by the general relativity and is well agreed with observations [3, 4].
So, it can be used as another clock. In most cases, the first derivative of the period Ṗ
is negligibly small and no fitting to unknown parameters is needed. This fact allows
us to constrain GWB at lower frequencies than 1/T by monitoring the gradual change
of the orbital period. Lower end of frequencies the limit can be obtained is f = 1/D,
where D is distance to the pulsar. The detailed analysis of PSR B1855+09 [124] gives
the limit

h2
0Ωgw < 2.7 × 10−4 at 1.1 × 10−11 Hz < f < 4.5 × 10−9 Hz .
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Figure 4.2: Observational constraints on a GWB and the predicted spectra of stochastic
GWBs. The observational constraints denote already obtained limits with solid lines
and future limits with dotted lines. The GWB spectra are due to the de-Sitter inflation
(H = 2.7 × 10−5 MPl), the quintessential inflation (gs(τ0) = 3.91, gs(τth) = 106.75,
λ = 10−14, R = 0.15), and the pre-big-bang model (µ = 1.5, fs = 10 Hz). The
limits come from the big-bang nucleosynthesis (BBN), WMAP, CMB+galaxy+Lyα, the
binary pulsar (BPSR), the millisecond pulsar (MSP), the pulsar timing array (PPTA),
and the square kilometre array (SKA), which are all explained in this chapter. There is
also shown the limit by a spacecraft Doppler tracking (Cassini) [125], the ground-based
GW detector (LIGO and advanced LIGO), the space-based GW detector (LISA and
DECIGO) [126], and the ultra-high frequency GW detectors [50]. The LIGO bound
and the sensitivity of advanced LIGO is described in Sec. 5.3.



Chapter 5

Direct search for GWB

5.1 Correlation analysis

Let us consider the outputs of a detector, s(t) = h(t) + n(t), where h(t) and n(t) are

the GW signal and the noise of a detector. From Eq. (2.23), at generic point X⃗, the
gravitational metric perturbations in the transverse traceless gauge are given by

h(t, X⃗) =
∑

A

∫
S2

dΩ̂

∫ ∞

−∞
df h̃A(f, Ω̂) e2πif(t−Ω̂·X⃗/c) eA(Ω̂) , (5.1)

where Ω̂ is a unit vector directed at GW propagation and h̃A(f, Ω̂) is the Fourier
transform of GW amplitude with polarizations A = +,×. Polarizarion tensors eA(Ω̂)
are defined in Eq. (2.24).

GW signal h(t) from a detector is given by D(f, Ω̂) : h(f, Ω̂), where the symbol
: denotes contraction between tensors, and D(f, Ω̂) is a so-called detector tensor,
which describes the total response of a detector and maps the gravitational metric
perturbation to the GW signal from a detector. We define it including detector response
functions as

D(f, Ω̂) ≡ 1

2

[
(û ⊗ û)T (f, Ω̂ · û) − (v̂ ⊗ v̂)T (f, Ω̂ · v̂)

]
. (5.2)

Here û and v̂ are unit vectors. We assume that they are orthogonal to each other and
are directed to each detector arm. The function T is a detector response function that
describes the effect of finite arm length on propagating light. In the detector whose
arm length is much smaller than the wavelength of GW, that is, in low frequency limit,
this function is approximated to unity, while in a detector whose size is comparable to
GW wavelength, the function significantly affects the response of the detector. This
is true for a synchronous recycling interferometer at ultra-high frequencies, which we
will investigate in Chap. 6.

Using Eqs. (5.1) and (5.2), GW signal h(t) can be written as

h(t, X⃗) =
∑

A

∫
S2

dΩ̂

∫ ∞

−∞
df h̃A(f, Ω̂) e2πif(t−Ω̂·X⃗/c)FA(f, Ω̂) , (5.3)

51
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where an angular pattern function of a detector Fp(f, Ω̂) is defined by

FA(f, Ω̂) ≡ D(f, Ω̂) : eA(Ω̂) . (5.4)

Cross-correlation signal Y between two detectors is defined as

Y ≡
∫ T/2

−T/2

dt

∫ T/2

−T/2

dt′ s1(t)s2(t
′)Q(t − t′) , (5.5)

where s1 and s2 are an output from each detector, T is observation time. Q(t− t′) is an
arbitrary real function, which is called an optimal filter. Its form is determined below
so that signal-to-noise ratio (SNR) is maximized. Fourier transforming s1(t) and s2(t),
one can obtain

Y =

∫ ∞

−∞
df

∫ ∞

−∞
df ′δT (f − f ′)s̃∗1(f)s̃2(f

′)Q̃(f ′), (5.6)

where s̃1(f), s̃2(f) and Q̃(f) are the Fourier transforms of s1(t), s2(t) and Q(t − t′),
respectively. δT (f) is the finite-time approximation to the Dirac delta function defined
by

δT (f) ≡
∫ T/2

−T/2

dt e−2πift =
sin(πfT )

πf
.

In the above derivation, we took the limit of large T for one of the integrals. This is
justified by the fact that, in general, Q(t − t′) rapidly decreases for large |t − t′|. The
correlation signal obtained above ideally has a contribution from only the GW signal
since we assume that noise has no correlation between two detectors. Thus, we take
ensemble average of Eq. (5.6) and obtain the signal from GWB,

µ ≡ 〈Y 〉 =

∫ ∞

−∞
df

∫ ∞

−∞
df ′δT (f − f ′)〈h̃∗

1(f)h̃2(f
′)〉Q̃(f ′) . (5.7)

Substituting the Fourier transform of Eq. (5.3),

h̃(f) =
∑

A

∫
S2

dΩ̂ h̃A(f, Ω̂)e−2πifΩ̂·X⃗/cFA(f, Ω̂) , (5.8)

into Eq. (5.7), and using Eqs. (2.25) and (2.27), one can obtain

µ =
3H2

0

20π2
T

∫ ∞

−∞
df |f |−3Ωgw(|f |) γ(|f |) Q̃(f). (5.9)

Here we defined the overlap reduction function,

γ(f) ≡ 1

(2/5)

∑
A

∫
S2

dΩ̂

4π
e2πifΩ̂·∆X⃗/cFA ∗

1 (f, Ω̂)FA
2 (f, Ω̂) , (5.10)

where the separation of two detectors is ∆X⃗ ≡ X⃗1 − X⃗2. The factor in a right-hand
side of Eq. (5.10) is a normalization factor so that the overlap reduction function gives
unity in low frequency limit.



53 5.1 Correlation analysis

This definition is slightly different from that in other papers [51, 7], because the
detector response function T is included in Eq. (5.2). In low frequency limit, T gives
unity, and the definition of Eq. (5.10) coincides with the equation in [51, 7]. The
overlap reduction function is defined as meaning how GW signals in two detectors
are correlated, and equals unity for colocated and coaligned detectors. However, the
difference is conspicuous at high frequencies. The overlap reduction function does not
give unity even for colocated and coaligned detector. Namely, the loss of GW signals
of detectors can be regarded as the reduction of overlap between two detectors. We
will return to this issue in Chap. 6 and investigate in detail. In this chapter, we will
treat detectors that GW wavelength is much larger than the size of the detectors and
can set the detector response function T = 1.

Next, we will calculate the variance of a correlation signal. Here we assume that
noises in two detectors do not correlate at all and that the magnitude of GW signal is
much smaller than that of noise. Consequently, the variance of correlation signal is

σ2 ≡ 〈Y 2〉 − 〈Y 〉2 ≈ 〈Y 2〉 . (5.11)

Then, using Eq. (5.6), it follows

σ2 ≈
∫ ∞

−∞
df

∫ ∞

−∞
df ′ Q̃(f)Q̃∗(f ′) 〈s̃∗1(f)s̃1(f

′)〉 〈s̃2(f)s̃∗2(f
′)〉

≈ T

4

∫ ∞

−∞
df P1(|f |)P2(|f |) |Q̃(f)|2 , (5.12)

where the one-sided power spectrum density of noise is defined by

〈ñ∗
i (f)ñi(f

′)〉 ≡ 1

2
δ(f − f ′)Pi(f), i = 1, 2 .

Now we can determine the form of the optimal filter Q̃(f). Equations (5.9) and
(5.12) are expressed more simply, using an inner product

(A,B) ≡
∫ ∞

−∞
dfA∗(f)B(f)P1(|f |)P2(|f |) ,

as

µ =
3H2

0

20π2
T

(
Q̃,

γ(|f |)Ωgw(|f |)
|f |3P1(|f |)P2(|f |)

)
, (5.13)

σ2 ≈ T

4

(
Q̃, Q̃

)
. (5.14)

From Eqs. (5.13) and (5.14), SNR for GWB is defined as SNR ≡ µ/σ. Therefore, the
optimal filter function turns out to be

Q̃(f) = K
γ(f)Ωgw(|f |)

|f |3P1(|f |)P2(|f |)
, (5.15)

with an arbitrary normalization factor K. Applying this optimal filter to the above
equations, we obtain maximal SNR

SNR =
3H2

0

10π2

√
T

[∫ ∞

−∞
df

γ2(|f |)Ω2
gw(|f |)

f 6P1(|f |)P2(|f |)

]1/2

. (5.16)
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5.2 Overlap reduction functions

5.2.1 Tensorial expansion

The overlap reduction functions can be analytically investigated by expanding them in
tensorial bases and carrying out the angular integral with respect to the propagating
direction of GWs [127, 51].

For real detectors on the Earth such as LIGO etc., the wavelength of GWs is much
larger than the size of detector. In this case, the angular pattern function defined in
Eq. (5.4) does not depend on frequencies, and is simply given by

FA(Ω̂) = D(Ω̂) : eA(Ω̂) , (5.17)

D(Ω̂) =
1

2
[û ⊗ û − v̂ ⊗ v̂] . (5.18)

Then, a non-normalized overlap reduction function γ̄ for a colocated and coaligned
detector pair (ideal case) is given by

γ̄ideal ≡
∑

A

∫
S2

dΩ̂

4π
FA ∗(Ω̂)FA(Ω̂) =

2

5
, (5.19)

which is exactly the same as the normalization factor appearing in Eq. (5.10). Defining

∆X⃗ = X⃗1 − X⃗2 ≡ |∆X⃗|d̂ ,

α(f) ≡ 2πf |∆X⃗|
c

,

and

Γijkℓ(α, d̂ ) ≡ 1

γ̄ideal

∑
A

∫
S2

dΩ̂

4π
eiαΩ̂·d̂ ẽA

ij(Ω̂)ẽA
kℓ(Ω̂) , (5.20)

one can write the overlap reduction function as

γ(f) = DijDkℓΓijkℓ(α, d̂ ) . (5.21)

Note that Γijkℓ satisfies the symmetric properties,

Γijkℓ = Γjikℓ , Γijkℓ = Γijℓk , Γijkℓ = Γkℓij .

Consequently, thank to the symmetries, Γijkℓ can be expanded in tensorial bases like

Γijkℓ(α, d̂ ) = C1(α)δijδkℓ + C2(α)(δikδjℓ + δjkδiℓ) + C3(α)(δij d̂kd̂ℓ + δkℓd̂id̂j)

= C4(α)(δikd̂j d̂ℓ + δiℓd̂j d̂k + δjkd̂id̂ℓ + δjℓd̂id̂k) + C5(α)d̂id̂j d̂kd̂ℓ .

(5.22)

Here we define the contracted quantities of Γijkℓ with the tensorial bases.

q1 ≡ Γijkℓδ
ijδkℓ, q2 ≡ Γijkℓ(δ

ikδjℓ + δjkδiℓ) , q3 ≡ Γijkℓ(δ
ij d̂kd̂ℓ + δkℓd̂id̂j) ,

q4 ≡ Γijkℓ(δ
ikd̂j d̂ℓ + δiℓd̂j d̂k + δjkd̂id̂ℓ + δjℓd̂id̂k) , q5 ≡ Γijkℓd̂

id̂j d̂kd̂ℓ ,

(5.23)
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Then, from Eqs. (5.22) and (5.23), the contractions q1, · · · , q5 can be related to the
coefficients C1, · · · , C5 by

q1

q2

q3

q4

q5

 =


9 6 6 4 1
6 24 4 16 2
6 4 8 8 2
4 16 8 24 4
1 2 2 4 1




C1

C2

C3

C4

C5

 ,

or, conversely, 
C1

C2

C3

C4

C5

 =
1

8


3 −1 −3 1 1
−1 1 1 −1 1
−3 1 5 −1 −5
1 −1 −1 2 −5
1 1 −5 −5 35




q1

q2

q3

q4

q5

 . (5.24)

On the other hand, q1, · · · , q5 can be calculated explicitly from Eq. (5.20), by integrating
with respect to the propagation direction of GWs over the celestial sphere. Formulae of
spherical Bessel functions jn(x) needed for the calculation are provided in the Appendix
B. The results are

q1 = 0 , q2 = 20j0(α) , q3 = 0 , q4 = 40
j1(α)

α
, q5 = 20

j2(α)

α2
,

and Eq. (5.24) can be reduced to
C1

C2

C3

C4

C5

 =
1

42


−28 80 3
42 −60 3
0 −120 −15
0 90 −15
0 0 105


 j0

j2

j4

 .

From Eqs. (5.21) and (5.22) together with the traceless property of Dij, the overlap
reduction function can be written as

γ(f) = ρ1(α)DijDij + ρ2(α)Di
kD

kjdidj + ρ3(α)DijDkℓdidjdkdℓ , (5.25)

with redefinitions of the coefficients, ρ1(α) = 2C2(α), ρ2(α) = 4C4(α), and ρ3(α) =
C5(α). The new coefficients are given by ρ1

ρ2

ρ3

 =
1

14

 28 −40 2
0 120 −20
0 0 35

 j0

j2

j4

 .
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Figure 5.1: Coordinate on the Earth for a detector pair.

5.2.2 Optimal configuration

To further investigate the dependence of the overlap reduction function on the detector
configurations, we introduce a coordinate, which simplifies the expression in Eq. (5.25),
as shown in Fig. 5.1. The relative location and orientation of two detectors are char-
acterized by the three parameters, (β, σ1, σ2). The β is the separation angle between
two detectors measured from the center of the Earth. The angles σ1 and σ2, are the
orientations of the bisector of two arms of each detector, measured in counterclockwise
manner relative to the great circle connecting the two detectors. The distance between
two detectors is given by

|∆X| = 2RE sin
β

2
,

where the radius of the Earth is RE = 6371 km. Defining new parameters,

σ+ ≡ σ1 + σ2

2
, σ− ≡ σ1 − σ2

2
,

one can characterize the overlap reduction function by the three parameters (β, σ+, σ−),
which determine a detector configuration. The overlap reduction function is given by

γT (α, β, σ+, σ−) = ΘT+(α, β) cos(4σ+) + ΘT−(α, β) cos(4σ−) , (5.26)
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together with

ΘT+(α, β) ≡ −
(

3

8
j0 −

45

56
j2 +

169

896
j4

)
+

(
1

2
j0 −

5

7
j2 −

27

224
j4

)
cos β

−
(

1

8
j0 +

5

56
j2 +

3

896
j4

)
cos 2β , (5.27)

ΘT−(α, β) ≡
(

j0 +
5

7
j2 +

3

112
j4

)
cos

(
β

2

)4

, (5.28)

Here the super- and sub-script ”T” are fixed on the functions in order to distinguish
the tensor mode (+ and × modes) from scalar and vector mode, introduced in the later
section.

From Eq. (5.26), the candidates for the optimal configuration of the detectors can
be classified into two types:

Type (i) : cos(4σ+) = cos(4σ−) = ±1 ,

Type (ii) : cos(4σ+) = − cos(4σ−) = ±1 . (5.29)

In the type (i), the solutions are σ1 = 0 mod π, σ2 = 0 mod π for the plus sign, and
σ1 = π/2 mod π, σ2 = 0 mod π for the minus sign. This means that the great circle
connecting two detectors is parallel to the bisector of the two arms of the detector,
including the orientations when one of the detectors is rotated by multiples of a right
angle. In the type (ii), the solutions are σ1 = π/4 mod π, σ2 = −π/4 mod π for the
plus sign, and σ1 = π/4 mod π, σ2 = π/4 mod π for the minus sign. This is the case
when the great circle connecting two detectors is parallel to one of the arms of the
detectors, including the orientations when one of the detectors is rotated by multiples
of a right angle. Therefore, the optimal configurations is implemented when one of
the arms of two detectors is parallel or rotated by multiples of 45 degrees, relative to
the great circle connecting two detectors. Note that all of the configurations are not
simultaneously optimal one, since whether the configuration is optimal or not depends
on the signs of the functions ΘT+ and ΘT−.

In Fig. 5.2 and Fig. 5.3, the functions ΘT+ and ΘT− are plotted as a function of
β for a fixed frequency and as a function of frequency for a fixed β (Tensor mode is
shown with red, solid curve.). When two detectors are close each other (β → 0), or at
low frequencies (f → 0), the magnitude of overlap reduction function is maximized.

5.2.3 Overlap reduction functions of realistic detector pairs

The positions and orientations of the ongoing and planed kilometer-size interferometers
are listed in Table 5.1. We use a spherical coordinate system (θ, φ) with which the
north pole is at θ = 0◦, and φ represents longitude. The orientation angle ψ is the angle
between the local east direction and the bisecting line of two arms of each detector
measured counterclockwise. Hereafter we will consider only advanced (the second-
generation) detectors: AIGO [35], LCGT [36], advanced LIGO (H1) and LIGO (L1)
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Figure 5.2: Plots of ΘM+ and ΘM−, M = T, V, S, as a function of β for fixed frequencies:
f = 10 Hz, 40 Hz, 80 Hz. Each curve shows tensor mode (red, solid), vector mode
(green, dotted), scalar mode (blue, dashed).
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Figure 5.3: Plots of ΘM+ and ΘM−, M = T, V, S, as a function of frequency for a fixed
β: β = π/6, π/3, π/2, 2π/3. Each curve shows tensor mode (red, solid), vector mode
(green, dotted), scalar mode (blue, dashed).



5. Direct search for GWB 60

[33], advanced VIRGO [34]. The reasons are because the number of pairs including
TAMA300 and GEO600 is too much to be presented here, and because the pair with
initial-generation interferometer is less sensitive to a GWB and has little opportunity to
detect a GWB. From the positions and orientations in Table 5.1, the relative positions
and orientations (β, σ+, σ−) for each detector pair turn out to be those listed in Table
5.2. The combinations are also illustrated in Fig. 5.4.

Given a parameter set (β, σ+, σ−), the overlap reduction function for the detector
pair can be calculated. The overlap reduction functions are shown in Fig. 5.5 and
Fig. 5.6.

The functions start to oscillate and decay rapidly above the frequency whose wave-
length corresponds to the separation between the detectors. The cutoff frequency fc is
given by fc ≡ c/(2|∆X|), and is listed in Table 5.3. Hence, largely separated detectors
are less sensitive to GWB at high frequencies. In addition, the functions approach
constant values at low frequencies. This value is completely determined by the relative
orientation of the detector pair.

5.3 Observational constraints on GWB by LIGO

LIGO has three power-recycled Michelson interferometers, with a Fabry-Perot cavity
in each orthogonal arm. They are located at two sites: Hanford, Washinton, and Liv-
ingston, Louisiana. There are two colocated interferometers at Hanford: H1 with 4
km-long arm, and H2 with 2 km-long arm. At Livingston site, there is one interferom-
eter: L1 with 4 km-long arm.

So far, five science runs (S1 - S5) have been done since 2002. S5 has been finished
in September, 2007. However, the cross-correlation analysis is proceeding now, and the
result has not been published yet. Thus, here we will refer the result of S4, which took
place between 2005 February 22 and March 23 [129].

Cross-correlation analysis of S4 data was performed, but no signal of GWB found.
Then, the upper limit on the energy density of GWB was obtained. During the S4 run,
three interferometers, H1, H2, and L1, were operated, but H1-H2 pair was contaminated
by instrumentally correlated noise. On the other hand, the instrumental noises of H1-L1
and H2-L1 pairs will, in general, be uncorrelated, though, in practice, negligible amount
of correlated noise within statistically uncertainty exists. Therefore, the constraint on
the energy density of GWB comes from the cross-correlated data of H1-L1 and H2-L1
pairs. For a frequency independent spectrum, the upper limit is

h2
0Ωgw < 3.4 × 10−5 , (90% C.L.) ,

in the frequency range 51-150 Hz.
In the future, 1-year data of H1 and L1 with goal sensitivity will reach the sensitivity

to GWB, h2
0Ωgw ≤ 1 × 10−6 in the 40-314-Hz band [130], which exceeds the current

BBN bound. Moreover, advanced LIGO, which is the updated version of H1 and L1
and whose sensitivity [131] is roughly 10 times better than that of initial LIGO in a
broad frequency range, will reach the sensitivity, h2

0Ωgw ≤ 2 × 10−9.
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interferometer θ φ ψ
AIGO (A) 121.4 115.7 -45.0
LCGT (C) 53.6 137.3 70.0
LIGO-H1 (H) 43.5 -119.4 171.8
LIGO-L1 (L) 59.4 -90.8 243.0
VIRGO (V) 46.4 10.5 116.5
TAMA300 (T) 54.3 139.5 225.0
GEO600 (G) 47.7 9.8 68.8

Table 5.1: Positions and orientations of kilometer-sized interferometers on the Earth
[128]. The figures are in an unit of degree.

detector pair β σ+ σ−
A - C 70.8 31.4 31.9
A - H 135.6 45.1 53.7
A - L 157.3 2.1 38.0
A - V 121.4 60.8 20.2
C - H 72.4 25.6 89.1
C - L 99.2 68.1 42.4
C - V 86.6 5.6 28.9
H - L 27.2 62.2 45.3
H - V 79.6 55.1 61.1
L - V 76.8 83.1 26.7

Table 5.2: Relative positions and orientations of a detector pair on the Earth. The
figures are in an unit of degree. Each detector is represented by initial letters indicated
in Table 5.1.

Figure 5.4: Relative positions and orientations of a realistic-detector pair. Left
panel shows the combinations (cos 4σ−, cos 4σ+). Right panel shows the combinations
(β, cos 4σ+). The condidates for the optimal configuration, type (i) and (ii), are also
shown in the left panel.
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Figure 5.5: Overlap reduction functions for real-detector pairs on the Earth. Each
curve shows tensor mode (red, solid), vector mode (green, dotted), scalar mode (blue,
dashed).
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detector pair separation [km] fc [Hz]
A - C 7377 20
A - H 11796 13
A - L 12493 12
A - V 11113 13
C - H 7522 20
C - L 9707 15
C - V 8735 17
H - L 2996 51
H - V 8156 18
L - V 7912 19

Table 5.3: Separation between two detectors and the cutoff frequency of the overlap
reduction function.

5.4 Searching for non-tensorial polarizations of grav-

itational waves

Recent cosmological observations surprisingly indicate that the expansion of the uni-
verse is accelerating [132, 133]. To explain the acceleration, various models are sug-
gested. The models are divided into two classes: modified gravity theories beyond the
general relativity, and extra-dimensional models such as brane-world type and Kaluza-
Klein type. In these models, extra degrees of freedom of spacetime allows non-tensorial
polarization modes of a GW to exist. Since the extra dimensions must be compactified
so as not to contradict observations, we cannot directly see them. However, if the GW
propagates in the extra dimensions, the GWs projected onto our three-dimensional
space can be seen for us as non-tensorial polarization modes, other than plus and cross
modes. This is also true for a modified gravity theory. If the modified gravity theory
itself contains another degree of freedom such as a coupling with spacetime curvature,
there exist non-tensorial polarization modes. Such a GW can be used as a probe for
new physics concerning the extra dimensions and the modified gravity theory. In a
pulsar timing array, the detectability of the non-tensorial mode is discussed in [134].
However, in a laser-interferometric GW detector, little work can be found.

5.4.1 Non-tensorial polarization mode

In general, it is known that a metric gravity theory in the four dimensional spacetime
allows, at most, six polarization modes of a GW [135, 2]. For the GW propagating in
z direction, the bases of the six polarizations are defined by (the tensor components
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Figure 5.6: Overlap reduction functions for real-detector pairs on the Earth. Each
curve shows tensor mode (red, solid), vector mode (green, dotted), scalar mode (blue,
dashed).

are x, y, z from the left or the top.),

ẽ+
ij =

 1 0 0
0 −1 0
0 0 0

 , ẽ×ij =

 0 1 0
1 0 0
0 0 0

 , ẽb
ij =

 1 0 0
0 1 0
0 0 0

 ,

ẽx
ij =

 0 0 1
0 0 0
1 0 0

 , ẽy
ij =

 0 0 0
0 0 1
0 1 0

 , ẽℓ
ij =

√
2

 0 0 0
0 0 0
0 0 1

 ,

(5.30)

where, in the first line, +, ×, and b denote plus, cross, breathing mode, in the second
line, x, y, and ℓ denote vector-x, vector-y, longitudinal mode, respectively. The tilde
is fixed at each polarization bases like ẽ in order to represent that they are projected
polarizations onto our three-dimensional spacetime in a general spacetime with extra
dimensions, and are defined in a three-dimensional space. Each polarization mode is or-
thogonal one another, and is normalized so that ẽA

ij ẽ
ij
A′ = 2δAA′ , A,A′ = +,×, b, ℓ, x, y.

Note that the breathing and longitudinal modes are not traceless. As we will see later,
the b and ℓ modes have a scalar-like property, and x and y have a vector-like property.
In Fig. 5.7, it is shown how each GW polarization affects the test masses on a circle.
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Figure 5.7: Six GW polarizations. Two ellipses show the effect of the GW polarization
on the test masses on a circle. The symbol

⊙
and the arrow represent the propagating

direction of a GW.

Which modes appear in several alternative theories is arranged in Table 5.4. As
one can see in the Table, the extra scalar polarizations appear more easily than the
vector polarizations.

5.4.2 Angular response of a single detector

The metric tensor with perturbations due to GWs is written as

ds2 = −dt2 +
[
δij + hij(ωt − k⃗ · x⃗)

]
dxidxj + (extra dim. terms) ,

(5.31)

hij(ωt − k⃗ · x⃗) = h+(ωt − k⃗ · x⃗)ẽ+
ij + h×(ωt − k⃗ · x⃗)ẽ×ij + hb(ωt − k⃗ · x⃗)ẽb

ij

+hℓ(ωt − k⃗ · x⃗)ẽℓ
ij + hx(ωt − k⃗ · x⃗)ẽx

ij + hy(ωt − k⃗ · x⃗)ẽy
ij ,

where hA, A = +,×, b, ℓ, x, y are complex amplitudes of GWs for each mode. In
Eq. (5.31), ”(Extra dim. terms)” are added only in the theories with extra dimen-
sions. The angular response function of a detector to GWs can be calculated from
Eqs. (5.17) and (5.18),

FA(Ω̂) = D(Ω̂) : ẽA(Ω̂) , D(Ω̂) =
1

2
[û ⊗ û − v̂ ⊗ v̂] , (5.32)
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theoretical model ẽ+
ij ẽ×ij ẽb

ij ẽℓ
ij ẽx

ij ẽy
ij

GR in pure 5D Minkowski spacetime ⃝ ⃝ ⃝1 ⃝1 ⃝ ⃝
GR in pure 6D Minkowski spacetime ⃝ ⃝ ⃝ ⃝ ⃝ ⃝
5D Kaluza-Klein compactification ⃝2 ⃝ ⃝2 — △3 △3

RS braneworld ⃝ ⃝ — — — —
DGP braneworld (normal branch) ⃝ ⃝ ⃝ ⃝ ⃝ ⃝
DGP braneworld (self-accelerating branch) ⃝ ⃝ ⃝ ⃝ ⃝ ⃝
scalar-tensor theory ⃝ ⃝ ⃝ ⃝ — —
Brans-Dicke theory ⃝ ⃝ ⃝ ⃝ — —
f(R) gravity ⃝ ⃝ ⃝ ⃝ — —
bimetric theory ⃝ ⃝ ⃝4 ⃝4 ⃝4 ⃝4

Table 5.4: GW polarization modes in various theories. The polarization modes in
pure Minkowski spacetimes are provided in AppendixD. Reference papers are [136]
for the 5D Kaluza-Klein compactification, [137] for the RS braneworld, [138] for the
DGP braneworld, [139, 140] for the scalar-tensor theory, [141, 139] for the Brans-Dicke
theory, [142, 143] for the f(R) gravity, and [144] for the bimetric theory. 1In a general
five-dimensional spacetime, five degrees of freedom for polarizations are allowed. In
general relativity (GR) in pure 5D Minkowski spacetime without the compactification,
two scalar modes are correlated and behave as one degree of freedom. 2The plus and
breathing modes are correlated. 3No vector mode appears in the absence of anisotropy
(a vector field) at cosmological scales. 4Extra polarizations can exist, but, would be
much small at high frequencies.

in which it is implicitly assumed that the wavelength of GWs is much larger than the de-
tector size. The absolute response of the detector, of course, depends on hA. However,
given the polarization tensors, the angular response function FA can be discussed inde-
pendently on the GW amplitude. We would not like to adhere to a model-dependent
search here, though it is important to investigate the prediction and parameter con-
straint on a theoretical model 1. So, in this section, we describe only the detectability
of the non-tensorial polarization of GWs with a laser-interferometric detector.

Suppose that an orthonormal coordinate in the three-dimensional space for a de-
tector is 

û = (1, 0, 0)
v̂ = (0, 1, 0)
ŵ = (0, 0, 1)

,

and the coordinate rotated by angles (θ, φ) for a GW is
û′ = (cos θ cos φ, cos θ sin φ,− sin θ)
v̂′ = (− sin φ, cos φ, 0)
ŵ′ = (sin θ cos φ, sin θ sin φ, cos θ)

.

The most general choice is obtained with the rotation with respect to the angle ψ

1We will leave them as future works.
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Figure 5.8: Coordinate systems are related by the rotation angles (φ, θ, ψ).

around the propagating axis of the GW,
m̂ = û′ cos ψ + v̂′ sin ψ
n̂ = −v̂′ sin ψ + û′ cos ψ

Ω̂ = ŵ′
.

The coordinate systems are drawn in Fig. 5.8.
With the coordinate (m̂, n̂, Ω̂), the polarization tensor is

ẽ+ = m̂ ⊗ m̂ − n̂ ⊗ n̂ ,

ẽ× = m̂ ⊗ n̂ + n̂ ⊗ m̂ ,

ẽb = m̂ ⊗ m̂ + n̂ ⊗ n̂ ,

ẽℓ =
√

2 Ω̂ ⊗ Ω̂ ,

ẽx = m̂ ⊗ Ω̂ + Ω̂ ⊗ m̂ ,

ẽy = n̂ ⊗ Ω̂ + Ω̂ ⊗ n̂ .

From Eq. (5.32), the angular pattern functions for each polarization result in

F+(θ, φ, ψ) =
1

2
(1 + cos2 θ) cos 2φ cos 2ψ − cos θ sin 2φ sin 2ψ ,

F×(θ, φ, ψ) = −1

2
(1 + cos2 θ) cos 2φ sin 2ψ − cos θ sin 2φ cos 2ψ ,

Fx(θ, φ, ψ) = sin θ (cos θ cos 2φ cos ψ − sin 2φ sin ψ) , (5.33)

Fy(θ, φ, ψ) = − sin θ (cos θ cos 2φ sin ψ + sin 2φ cos ψ) , (5.34)

Fb(θ, φ) = −1

2
sin2 θ cos 2φ , (5.35)

Fℓ(θ, φ) =
1√
2

sin2 θ cos 2φ . (5.36)
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The ψ dependence indicates that the + and × modes have a tensor property (spin-2),
the x and y modes have a vector property (spin-1), the b and ℓ modes have a scalar
property (spin-0). Unfortunately, the angular pattern functions of the breathing and
longitudinal modes are completely degenerated, which prohibits to decompose them
with a laser-interferometric GW detector (It is also true for a laser-interferometric GW
detector with non-orthogonal arms.). In Fig. 5.9, the angular pattern functions for the
non-tensorial polarizations are shown. In Fig. 5.10, we also show the angular pattern
functions for the tensor, vector, scalar modes. These results are consistent with those
obtained by Tobar, Suzuki, Kuroda [145].

5.4.3 Overlap reduction function

Next, we consider not GWs from a point-source but GWB. The reason is that, the
GWB has less parameters because of its stochastic nature. The non-Einstein mode in
a GW from a point source is a interesting subject that should be studied. However,
to decompose the polarizations, one has to identify the source location on the sky, in
addition to the six polarizations. Thus, more than eight detectors (for two sky coordi-
nate parameters and six polarizations) are needed for the complete decomposition. On
the other hand, in the case of the GWB, there is no preferred direction. In addition,
in most of the cosmological scenarios, it is natural to assume that the + and × modes,
or x and y modes are not polarized. Since the number of parameters are less, three
detector is enough to decompose the polarization modes (tensor, vector and scalar).

Definitions

Let us define generalized overlap reduction functions for the non-tensorial polarizations.
From Eqs. (5.9), (5.10) and (5.19), the cross-correlation signal for the tensor mode can
be written as

µ =
3H2

0

20π2
T

∫ ∞

−∞
df |f |−3 1

γ̄T
ideal

∑
A=+,×

2ΩA
gw(|f |)γ̄A(|f |)Q̃(f) , (5.37)

γ̄A ≡
∫

S2

dΩ̂

4π
e2πifΩ̂·∆X⃗/c FA

1 FA
2 ,

where we assume that + and × modes are not polarized (ΩA
gw = Ωgw/2), and γ̄A is a

non-normalized overlap reduction function for each polarization. We also assume that
x and y modes are not polarized. Then, the GWB energy density of tensor, vector,
scalar modes can be written as

ΩT
gw ≡ Ω+

gw + Ω×
gw (Ω+

gw = Ω×
gw) , (5.38)

ΩV
gw ≡ Ωx

gw + Ωy
gw (Ωx

gw = Ωy
gw) , (5.39)

ΩS
gw ≡ Ωb

gw + Ωℓ
gw = Ωb

gw(1 + κ) . (5.40)

where the ratio of the energy density in the longitudinal mode to that in the breathing
mode is κ ≡ Ωℓ

gw/Ωb
gw. Using Eqs. (5.33) - (5.36), one can calculate the ideal values
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Figure 5.9: Angular pattern functions of a detector for the non-tensorial polarizations.
(a) plus mode F+, (b) cross mode F×, (c) x mode Fx, (d) y mode Fy, (e) longitudinal
mode Fℓ. The angular pattern function of the breathing mode is the same as that of
the longitudinal mode except for an overall factor 1/

√
2. At the center of the figure,

the arms of an interferometer is shown.
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Figure 5.10: Angular pattern functions of a detector for the tensor, vector, scalar
modes. Each plot is

√
F 2

+ + F 2
×,

√
F 2

x + F 2
y ,

√
F 2

b + F 2
ℓ , respectively.

of the non-normalized overlap reduction functions for the non-tensorial polarizations,
which gives

γ̄T
ideal =

∫
S2

dΩ̂

4π
(F 2

+ + F 2
×) =

2

5
,

γ̄V
ideal ≡

∫
S2

dΩ̂

4π
(F 2

x + F 2
y ) =

2

5
,

γ̄S
ideal ≡

∫
S2

dΩ̂

4π
(F 2

b + κF 2
ℓ ) =

1 + 2κ

15
.

The first equation for the tensor mode is the same as Eq. (5.19). Then, the generalized
overlap reduction functions for the non-tensorial polarizations are defined by

γT
IJ(f) =

1

γ̄T
ideal

∫
S2

dΩ̂

4π
e2πifΩ̂·∆X⃗/c(F+

I F+
J + F×

I F×
J ) , (5.41)

γV
IJ(f) ≡ 1

γ̄V
ideal

∫
S2

dΩ̂

4π
e2πifΩ̂·∆X⃗/c(F x

I F x
J + F y

I F y
J ) , (5.42)

γS
IJ(f) ≡ 1

γ̄S
ideal

∫
S2

dΩ̂

4π
e2πifΩ̂·∆X⃗/c(F b

I F b
J + κF ℓ

I F
ℓ
J) , (5.43)

The subscripts I, J represent I-th and J-th detectors, which are fixed for a general case
with more than three detectors. The first equation (5.41) for the tensor mode is the
same as Eq. (5.10). Here we assumed that gravitons propagate with the speed of light
2.

2Strictly speaking, the propagation speed is less than the speed of light if the gravitons are massive.
It is true in a spacetime with extra dimensions or in some modified gravity theories. However, the mass
is constrained by several observations of the galaxy [146], the solar system [147], and binary pulsars
[148]. The limits from the galaxy and the solar system is obtained from the observation in static
gravitational fields, while the limit of binary pulsars comes from the change of the orbital period of
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Therefore, for generalized case including the non-tensorial polarizations,
Eq. (5.37) can be extended as

µ =
3H2

0

20π2
T

∫ ∞

−∞
df |f |−3 1

γ̄T
ideal

∑
A=+,×,x,y,b,ℓ

2 ΩA
gwγ̄AQ̃(f)

=
3H2

0

20π2
T

∫ ∞

−∞
df |f |−3

[
ΩT

gwγT + ΩV
gwγV + ξ ΩS

gwγS

]
Q̃(f) ,

ξ ≡ 1

3

(
1 + 2κ

1 + κ

)
,

where, in the second line of µ, we used Eqs. (5.38) - (5.40) and (5.41) - (5.43). The
parameter ξ is in the range 1/3 ≤ ξ ≤ 2/3 and characterizes the ratio of the energy in
the longitudinal mode to the breathing mode.

Specific expressions for real detectors on the Earth

The overlap reduction functions for the vector and scalar modes can be analytically
expanded by tensor bases, as well as the tensor mode in Sec. 5.2.1. The calculation
is parallel with those for the tensor mode. So, here we give only the final results (In
Appendix C, the results in the course of the calculation is provided.),

γM
IJ(f) = ρM

1 (α)Dij
I DJ

ij + ρM
2 (α)Di

I, kD
kj
J didj + ρM

3 (α)Dij
I Dkℓ

J didjdkdℓ , (5.44)

with, for the vector mode, ρV
1

ρV
2

ρV
3

 =
2

7

 7 5 −2
0 −15 20
0 0 −35

 j0

j2

j4

 .

and, for the scalar mode, ρS
1

ρS
2

ρS
3

 =
1

7

 14 20 6
0 −60 −60
0 0 105

  j0

j2

j4

 . (5.45)

The superscript M in Eq. (5.44) denotes the modes M = V (vector), S (scalar). Note
that the parameter κ vanishes in the overlap reduction function because Fb and Fℓ

have the same response and γ is normalized. Equation (5.45) agrees with the previous
result by Maggiore and Nicolis [149].

the binary pulsars (PSR B1913+16 and PSR B1534+12), in dynamical gravitational fields. Finn and
Sutton considered energy loss from the binary system by emission of massive gravitons, and obtained
the limit on the mass of gravitons, (mg/ωorbit)2 < 0.003, where ωorbit is the orbital frequency of the
binary. This limit implies

vg

c
=

√
1 −

(
mg

ωorbit

)2

& 0.998 ,

The gravitons cannot change its speed by more than 0.2% from the speed of light. Thus, setting
vg = c does not affect to cross-correlation analysis qualitatively.
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Next, we consider the overlap reduction functions of real detectors on the Earth.
The overlap reduction function (5.44) can be simply expressed by introducing the
coordinate system on the Earth defined in Sec. 5.2.2, and is given by

γV (α, β, σ+, σ−) = ΘV +(α, β) cos(4σ+) + ΘV −(α, β) cos(4σ−) ,

γS(α, β, σ+, σ−) = ΘS+(α, β) cos(4σ+) + ΘS−(α, β) cos(4σ−) ,

with, for the vector mode,

ΘV +(α, β) ≡ −
(

3

8
j0 +

45

112
j2 −

169

224
j4

)
+

(
1

2
j0 +

5

14
j2 +

27

56
j4

)
cos β

−
(

1

8
j0 −

5

112
j2 −

3

224
j4

)
cos 2β , (5.46)

ΘV −(α, β) ≡
(

j0 −
5

14
j2 −

3

28
j4

)
cos

(
β

2

)4

, (5.47)

and, for the scalar mode,

ΘS+(α, β) ≡ −
(

3

8
j0 +

45

56
j2 +

507

448
j4

)
+

(
1

2
j0 +

5

7
j2 −

81

112
j4

)
cos β

−
(

1

8
j0 −

5

56
j2 +

9

448
j4

)
cos 2β , (5.48)

ΘS−(α, β) ≡
(

j0 −
5

7
j2 +

9

56
j4

)
cos

(
β

2

)4

, (5.49)

ΘM+ and ΘM−, M = V, S, are plotted as a function of β for fixed frequencies in
Fig. 5.2 and as a function of frequency for a fixed β in Fig. 5.3, together with the
tensor mode (M = T ). The difference from the tensor mode appears at about the
cutoff frequency of the overlap reduction function. Mathematically, this is because the
coefficients of j0 in Eqs. (5.27) and (5.28) for the tensor mode, Eqs. (5.46) and (5.47)
for the vector mode, and Eqs. (5.48) and (5.49) for the scalar mode, are exactly same,
and the difference comes from the terms of j2 and j4. In other words, at low frequencies
where j0 → 1, j2 → 0, and j4 → 0, three modes are degenerated, while, at relatively
high frequencies, they behave differently. However, at much higher frequencies, the
overlap reduction function decays. Therefore, the most interesting frequency range
is around the cutoff frequency, e.g. ∼ 10 − 100 Hz for detectors on the Earth. The
overlap reduction functions for a real ground-based detector pair is plotted in Fig. 5.5
and Fig. 5.6, together with the tensor mode.

5.4.4 Detectability

Considering the overlap reduction functions in the previous section, one can expect
to detect the non-Einstein modes as well as the tensor mode. However, the most
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important quantity in an observation is a SNR given by integrating with respect to
a frequency. In this section, we calculate the SNR for each mode with two detectors,
assuming that only one mode exists.

The SNR can be calculated by using the formula defined in Eq. (5.16),

SNR =
3H2

0

10π2

√
T

[
2

∫ ∞

0

df
γ2(f)Ω2

gw(f)

f 6P1(f)P2(f)

]1/2

,

and replacing γ2Ω2
gw with γ2

T (ΩT
gw)2 for the tensor mode, with γ2

V (ΩV
gw)2 for the vector

mode, and with ξ2γ2
S(ΩS

gw)2 for the scalar mode. As for the power spectra of the
detector noise Pi(f), we assume that, for simplicity, all advanced detectors (A, C, H,
L, V) have the same noise as that of advanced LIGO. The analytical fit of the noise
power spectrum of the advanced LIGO, based on [131], is given by [128],

P (f) =



10−44

(
f

10 Hz

)−4

+ 10−47.25

(
f

100 Hz

)−1.7

Hz−1

for 10 Hz ≤ f ≤ 240 Hz ,

10−46

(
f

1000 Hz

)3

Hz−1 for 240 Hz ≤ f ≤ 3000 Hz ,

∞ otherwise .

In the calculation, we assume that the Ωgw is independent of frequency and the ob-
servation time is T = 3 yr. In Fig. 5.11, the SNRs of the optimal detector pairs,
type (i) and (ii), are shown as a function of β. As one can see, detector pairs
have almost the same sensitivity to the three modes. In Fig. 5.12, the optimal SNR,
max

{
SNR|type(i), SNR|type(ii)

}
, is shown as a function of β, together with SNRs of real-

detector pairs for each mode. The SNRs of real-detector pairs, except for AIGO-LIGO
(H1) and AIGO-LIGO (L1) pairs, are smaller than the optimal one due to the incom-
plete coincidence of the detector orientations. It is interesting to note that the scalar
mode is enhanced in the SNR at the distance relatively close, and that the tensor mode
is enhanced at the distance relatively far. This feature can be intuitively interpreted
by the anglular responses of the detector shown in Fig. 5.10. At β ∼ π/2, the anglular
responses of the tensor mode between two detectors are less overlapped than those of
the scalar and vector modes. On the other hand, at β ∼ π, the anglular responses of
the tensor mode between two detectors are more overlapped. SNRs with a realistic de-
tector pair are tabulated in Table 5.5. Therefore, a laser-interferometric GW detector
is sensitive to a GWB with the non-tensorial polarizations, having almost the same
SNR as the tensor mode.

In this section, we explored the detectability in the presence of an individual mode
(tensor, vector, or scalar). However, in a general situation, three GWB modes are
mixed in the detector cross-correlation signal. So, the decomposition of the modes
is significant problem, which should be addressed. It would be possible if more than
three detectors at different sites are available, because of the different dependence of
the overlap reduction functions of the three modes on β. We will remain the problem
as future work.
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Figure 5.11: SNRs of the detector pair of type (i) (solid lines) and type (ii) (dashed
lines) as a function of β. The tensor, vector, and scalar modes are represented by
red, green, and blue curves, respectively. The energy density of a GWB is chosen as
h2

0Ω
M
gw = 10−8, M = T, V, S.

detector pair h2
0Ω

T
gw h2

0Ω
V
gw ξh2

0Ω
S
gw

A - C 8.6 × 10−9 8.6 × 10−9 4.5 × 10−9

A - H 3.6 × 10−9 1.1 × 10−8 7.3 × 10−9

A - L 3.4 × 10−9 1.2 × 10−8 8.8 × 10−9

A - V 8.7 × 10−9 2.1 × 10−8 1.4 × 10−8

C - H 1.2 × 10−8 8.4 × 10−9 8.4 × 10−9

C - L 4.5 × 10−8 2.8 × 10−8 2.5 × 10−8

C - V 5.7 × 10−9 6.9 × 10−9 4.7 × 10−9

H - L 1.6 × 10−9 2.0 × 10−9 1.7 × 10−9

H - V 7.1 × 10−9 7.5 × 10−9 4.5 × 10−9

L - V 6.7 × 10−9 6.4 × 10−9 4.3 × 10−9

Table 5.5: Detectable Ωgw for each mode with a real detector pair (SNR = 5). The
observation time is selected as T = 3 yr.
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Figure 5.12: SNRs of the optimal and real detectors as a function of β. The en-
ergy density of a GWB is chosen as h2

0Ω
M
gw = 10−8, M = T, V, S. Each curve shows

max
{
SNR|type(i), SNR|type(ii)

}
for the tensor mode (red, solid), the vector mode (green,

dotted), and the scalar mode (blue, dashed). The filled circles are the SNR of real de-
tector pairs for the tensor mode (red), the vector mode (green), and the scalar mode
(blue). At the arrow in the figure, four circles are overlapped: (detector pair, mode) =
(2, tensor), (2, vector), (3, vector), and (3, scalar). The numbers in the figure repre-
sent the real detector pair: 1=HL, 2=AC, 3=CH, 4=LV, 5=HV, 6=CV, 7=CL, 8=AV,
9=AH, 10=AL.





Chapter 6

Direct GWB search at ultra-high
frequencies

At ultra-high frequencies, much effort for the direct GW detection has not been de-
voted. Consequently, the direct constraint due to the GW detector is so loose, though
the indirect constraint due to the big-bang nucleosynthesis has been obtained. This
is because the GW amplitude is much smaller at high frequencies than that at low
frequencies, and it makes the detection difficult. However, pioneering works are vital
for future GW astronomy and cosmology.

At present, as far as I know, GW detectors have been constructed so far by the
groups at INFN, Genova, Italy [41, 42], Birmingham University, UK [43, 44, 45], and
is planned at Chongqing University, China [46, 47] 1. The INFN detector is based on
the principle of the parametric conversion of power between the resonant modes of two
superconducting coupled microwave cavities. The Birmingham detector is based on
detecting the rotation of the polarization vector of an electromagnetic wave induced
by the interaction between a GW and the polarization vector of the electromagnetic
wave. The Chongqing detector uses the electromagnetic interaction of a Gaussian beam
propagating through a static magnetic field. These detectors are based on the different
principles from the phase measurement with the laser interferometry developed well in
the ground-based large-scale interferometers around 100 Hz.

We will first use a laser interferometer for the GW search at ultra-high frequencies.
However, the application of the detection method to an ultra-high frequency band is
not as simple as one expects, because, at ultra-high frequencies, GW wavelength is
comparable to the size of a detector, which is, for example, the order of a few meters
to detect GWs at 100 MHz. In such a case, a long-wave approximation that the GW
wavelength is much larger than the detector size is not valid. The phase of GW changes
during the one-way trip of light between mirrors. Therefore, we have to use a detector
design that is able to integrate GW signals efficiently. Moreover, to detect GWB with
smaller amplitude than detector noise, one has to correlate signals from two detectors
in order to distinguish the GW signal. The analytical method has been well developed
by several authors [51, 150, 127]. However, it is not applicable to our situation at

1The sensitive frequency ranges of the detectors is different each other: the INFN detector is at
1MHz, the Birmingham detector is at 100MHz, and the Chongqing detector would be 10GHz.
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ultra-high frequencies, because in these references, they assume that GW wavelength
is much larger than the detector size. At ultra-high frequencies, the relative location
of the two detectors significantly affects the correlation sensitivity to GWB.

In the following sections after briefly introducing GW sources at ultra-high frequen-
cies, we investigate an optimal detector design at ultra-high frequencies by comparing
the GW response functions of detectors [48]. Next, we will use the extended formalism
of cross-correlation analysis, derived in Sec. 5.1. The formalism properly includes the
effect of the response functions of the detectors. We investigate the dependence of the
sensitivity on the relative location of two detectors [49]. For concreteness, we consider
GWs at 100 MHz and select detector configuration to detect it. However, note that
our investigation is general, and is always applicable to GWs other than 100 MHz.

6.1 Gravitational-wave sources at ultra-high frequen-

cies

GW searches at ultra-high frequencies are strongly motivated by theoretical predic-
tions. As described in Chap. 3, some theoretical models, such as quintessential infla-
tion and pre-big-bang model etc., produces much larger GWB spectra than that in the
standard slow-roll inflation, at ultra-high frequencies. There also exist GWs from a
point source at ultra-high frequencies. The GWs from ordinary astronomical objects
are radiated at the frequency range,

fgw ∼ (Gρ)1/2 ∼
(

GM

R3

)1/2

. 10

(
M⊙

M

)
kHz . (6.1)

Here we used the Schwarzschild radius R = 2GM for the most compact object. How-
ever, if there are compact objects with its mass smaller than 1 M⊙, or, in the scenario
with extra dimensions, ultra-high frequency GWs are emitted.

Primordial black holes

Primordial black holes (PBHs) may have formed in the early universe either from initial
inhomogeneities or as a result of phase transition (for the recent review, see [151]).
Consequently, the mass of a PBH formed in the early universe roughly corresponds to
the total mass inside the Hubble horizon at that time, which is given by [152, 153]

MH(t) ≈ 1015

(
t

10−23 sec

)
g . (6.2)

By contrast, black holes forming at the present epoch could never be smaller than
about 1 M⊙. The origin of such low mass black holes is necessarily of primordial. From
Eq. (6.1), 100−MHz GWs are radiated by the black holes of Jupiter mass, ∼ 10−4 M⊙.

If such PBHs are produced in the early universe, they survive until the present
epoch, and emit GWs via binary evolution and coalescence [154, 155]. The quasi-
normal ringing frequency of the PBH with the mass ∼ 10−4 M⊙ is ∼ 100 MHz. On
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the other hand, in many brane world models, PBHs with a lunar mass, ∼ 10−7 M⊙
might have been produced when the temperature of the universe was at ∼ 1 TeV. If a
significant fraction of the dark matter of our galaxy consists of these lunar mass PBHs,
we have a chance to detect GWs from the PBHs at ultra-high frequencies, and could
find some indications of extra dimensions in the phase evolution of the chirp waveform
of GWs [156].

Black strings in a brane world

In braneworld scenario such as the Randall-Sundrum (RS) type [157, 158], one of black
hole solutions in the presence of the second brane is a so-called black string solution,
which is the Schwarzschild solution warped in the direction of an extra dimension. If
the black string is perturbed, it radiates massive gravitational waves, namely, Kaluza-
Klein (KK) modes, with a characteristic spectrum of an extra dimension [159, 160].
The waveform is quite different from that in a 4-dimensional case, and shows less
damping than the massless mode and late-time monochromatic oscillations instead
of a featureless power-law tail. The frequency is discrete, corresponding to the KK
tower of the gravitons, and is determined by the bulk curvature scale and the brane
separation, not depending on the black string and companion object masses. The
typical frequency and amplitude predicted in [160] are relevant to the GW detector
at ultra-high frequencies, ∼ 100 MHz or above. Therefore, it should be stressed the
necessity to develop the detectors capable of measuring such a high-frequency signature
of large extra dimensions.

6.2 Optimal detector design

6.2.1 Interferometric-detector designs

We will consider three detector designs, (i) synchronous recycling interferometer (SRI),
(ii) Fabry-Perot Michelson interferometer (FPMI) and (iii) L-shaped cavity Michelson
interferometer (LMI), and derive the response functions for GWs.

SRI (Fig.6.1) was first proposed by R. W. P. Drever in [161] and detailed calculations
have been done in [162, 163]. Laser light is split at a beam splitter and sent into
an synchronous recycling (SR) cavity through a recycling mirror, which is mirror A
located at X1 in Fig.6.1. The beams circulating clockwise and counterclockwise in
the cavity experience gravitational waves and mirror displacements, leave the cavity,
and are recombined at the beam splitter. Then, the differential signal is detected at
a photodetector. The advantage of SRI is that GW signals at certain frequencies are
accumulated and amplified because the light beams experience GWs with the same
phases during round trips in the folded cavity. Consider GW propagating normally
to the detector plane with an optimal polarization. In this case, the GW signal is
amplified at the frequencies f = (2n− 1)× c/4L, n = 1, 2, · · · , where c is the speed of
light and L is the arm length. More precisely, the arm length is the distance between
X1 and X2 (or X3) in Fig.6.1. On the other hand, the disadvantage of SRI is less



6. Direct GWB search at ultra-high frequencies 80

sensitivity for GWs at low frequencies, f < c/4L, because the GW signal is integrated
in the cavity and canceled out as the frequency is low.

Figure 6.1: Synchronous recycling interferometer (SRI).

The competitive design of detectors with SRI is an ordinary FPMI (Fig.6.2). FPMI
is the most popular design for current ground-based interferometers [30, 31, 32, 29] since
it has good sensitivity at low frequencies due to the amplification of GW signals with
Fabry-Perot cavities. However, to amplify the GW signals at high frequencies, one
needs to use resonance due to the cavity. FPMI has the resonance of GW signals at
the frequencies, f = n × c/2L, n = 1, 2, · · · when the GW response is averaged over
the entire sky. To take advantage of the resonant response to GW at 100 MHz, the arm
length of FPMI should be 1.5 m. With this detector, one can achieve good sensitivity
with narrow bandwidth as well as SRI.

Another possible design of detectors is LMI (Fig.6.3), whose optical configuration
is the same as the L-shaped FPMI. However, the GW response resembles SRI rather
than FPMI. Thus, this design can be regarded as being intermediate between SRI and
FPMI.

To compare the detectors for GWB at 100 MHz, it is necessary to derive the GW
response functions for GW propagating in arbitrary directions and to compare those
averaged on the celestial sphere. For GW propagating normal to the detector plane
with an optimal polarization, it is trivial that SRI and LMI with arm length 0.75 m
have maximal sensitivity, while FPMI with 1.5 m is not sensitive at all, at 100 MHz.
However, FPMI has nonzero sensitivity for GW not propagating orthogonally to the
arms of the detector since the GW response of light going and coming differs. Fur-
thermore, the geometries of detectors also affect the GW responses. Therefore, it is
nontrivial which is the most sensitive detector.
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Figure 6.2: Fabry-Perot Michelson interferometer (FPMI).

6.2.2 GW response functions

The general expression of the phase shift of light induced by GW propagating in an
arbitrary direction has been derived in many references, for example, [164, 117]. We
will use the expression in [164]. When light travels between two test masses located at
XI and XJ , the phase shift of light created by GW in TT (transverse-traceless) gauge
is expressed as

δφIJ(t) = (nIJ ⊗ nIJ)

:
ω

2

∫ LIJ/c

0

dt′
∑

A

eAhA[t − (LIJ + ez · XI)/c + (1 − ez · nIJ)t′] ,

(6.3)

where t is the reception time of light at XJ , ω is the angular frequency of light, hA

is the amplitude of GW with plus or cross polarization and ez is a unit vector in the
direction of GW propagation. The arm length and unit vector in the direction of the
arm are defined as LIJ ≡ |XJ − XI | and nIJ ≡ (XJ − XI)/LIJ , respectively. The
symbol : means contraction between a tensor and vectors. The tensors eA, A = +,×
are polarization tensors of GW and are defined as well as Eq. (2.24) by

e+ = ex ⊗ ex − ey ⊗ ey ,
e× = ex ⊗ ey + ey ⊗ ex ,

(6.4)

where ex and ey are the unit vectors, which form the orthogonal coordinate with ez
2. For simplisity, we assume that there is no displacement noise, for example, thermal

2In this section, we use ez instead of Ω̂ used in other sections, so as not to be confused with the
angular frequency of a GW Ω. Note that the coordinate systems {ex, ey, ez} and {m̂, n̂, Ω̂} are
identical.
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Figure 6.3: L-shaped cavity Michelson interferometer (LMI).

noise, seismic noise, radiation pressure noise, etc., at 100 MHz3. In practice, such
undisirable noises deteriorate detector sensitivity in a real experiment. Treatments
to avoid the noises are described later in the section of correlated noises. Under the
assumption of no displacement, the positions of mirrors in the absence of GW are not
perturbed and are just given by XI and XJ . The Fourier transform of Eq. (6.3) is given
by

δ̃φIJ(Ω) = nIJ ⊗ nIJ :
ω

2

∑
A

eAh̃A
e−iΩ(ez ·XJ )/c − e−iΩ(LIJ+ez ·XI)/c

iΩ(1 − ez · nIJ)
, (6.5)

where h̃p is the Fourier component of the GW amplitude, and Ω is the angular frequency
of GW and is related to the GW frequency with Ω = 2πf .

In general, the response function of a detector is represented by the round-trip
signal in cavities multiplied by an amplification factor in cavities. We denote the phase
shift of the round-trip signal by δ̃φ(Ω) and the amplification factor by α(Ω). Then,
the total output from the detector δ̃Φ(Ω) is written as δ̃Φ(Ω) = α(Ω)δ̃φ(Ω). Detailed
calculations are described in the Appendix E. We show here only the results. Note
that we change the notation of the unit vectors directed in arms and the reflectivity of
mirrors in order to simplify the expression and make it easy to compare. The response
functions of each detector are

δ̃Φall(Ω) = α(Ω, RF , RE)δ̃φall(Ω) , (6.6)

α(Ω, RF , RE) = − RET 2
F

(RF − RE)(1 − RF RE e−4iΩτ )
, (6.7)

3In fact, rough estimates show that this assumption is at least valid as long as the detector sensi-
tivity is above h ∼ 10−20 Hz−1/2. In the experiment that reaches better sensitivity, thermal noise of
mirrors might limit the sensitivity, though other noises are far below.
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and

• SRI
Replacing n12 → u, n13 → v and (RA, RC) → (RF , RE) in Eq. (E.7), the response
function is

δ̃φall(Ω) = (1 − e−2iΩτ )
ω

Ω
e−iΩ(τ+ez ·X1/c)

∑
A

eAh̃A

: [(v ⊗ v) HSRI(Ω, vz) − (u ⊗ u) HSRI(Ω, uz)] ,

(6.8)

with

HSRI(Ω, uz) ≡
1

1 − u2
z

[
sin Ωτ − iuz(e

−iΩτuz − cos Ωτ)
]

,

• FPMI
Doubling the arm length, τ → 2τ , so that the FPMI resonates at the same
frequencies as the SRI, and replacing n1 → u, n2 → v in Eq. (E.13), the response
function is

δ̃φall(Ω) =
ω

iΩ
e−iΩ(2τ+ez ·XF /c)

∑
A

eAh̃A

: [(u ⊗ u) HFPM(2Ω, uz) − (v ⊗ v) HFPM(2Ω, vz)] ,

(6.9)

with
HFPM(Ω, uz) ≡ HSRI(Ω, uz) ,

• LMI
Replacing n1 → u, n2 → v in Eq. (E.18), the response function is

δ̃φall(Ω) =
ω

Ω
e−iΩ(2τ+ez ·XF /c)

∑
A

eAh̃A

: [(v ⊗ v) HLMI(Ω, vz) − (u ⊗ u) HLMI(Ω, uz)] .

with

HLMI(Ω, uz) ≡ 1

1 − u2
z

[ sin Ωτ (e−ip1 + e−ip2 − 2 cos Ωτ)

−iuz(e
−i(p1+p2) + cos 2Ωτ − (e−ip1 + e−ip2) cos Ωτ) ] .

Here we defined uz ≡ ez · u and vz ≡ ez · v. The phases p1 and p2 are defined by
p1 ≡ Ωτuz and p2 ≡ Ωτvz, τ is defined by τ ≡ L/c and RF and RE are the amplitude
reflectivities of front and end mirrors of cavities, respectively. TF is the amplitude
transmissivity of a front mirror of cavities. Note that, in the case of SRI, the front and
end mirrors correspond to a recycling mirror and three other mirrors. Here we doubled
the arm length of FPMI so that the first resonant frequency of GW signal coincides
with that of SRI and LMI. The formula for a FPMI is also calculated in [165, 166], and
our result agrees with them.
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6.2.3 Detector comparison

As mentioned in the previous section, in general, the GW response function has the
form δ̃Φall = α δ̃φall. We will consider α, which is the common factor for all detectors,
and δ̃φ, which depends on the geometry of each detector, separately.

From Eq. (6.7), the magnitude of the optical amplification factor in the cavities is
determined only by the (composite) reflectivities of the front and end mirrors. The
frequencies of the peaks depend on the arm length of detectors. α is plotted in Fig. 6.4.
In the figure, we selected L = 0.75 m so that the first resonant peak is located at
100 MHz. At higher frequencies, there are many resonant peaks. At lower frequencies,
optical amplification is stronger as the frequency is lower, since the wavelength of light
is larger than the arm length of a detector. Here we selected the amplitude reflectivities
RF = 0.99 and RE = 1 for an illustrative purpose. However, in a real experiment, one
should select the reflectivities of the front mirrors much higher in order to achieve
better sensitivity, though the bandwidth becomes narrower.

Figure 6.4: The optical amplification factor α(Ω). Parameters are selected L = 0.75m,
RF = 0.99 and RE = 1.

To evaluate the round-trip phase shift due to GWs δ̃φall, we introduce coordinates
here. The detectors are located on the X-Y plane. Two unit vectors u and v are
written as u = (0, 1, 0) and v = (1, 0, 0), respectively. We denote the direction of
GW propagation by the unit vector ez, and the two unit vectors normal to ez and
orthogonal to each other by ex and ey. These are written as

ex = ( cos θ cos φ, cos θ sin φ, − sin θ ) ,

ey = ( − sin φ, cos φ, 0 ) ,

ez = ( sin θ cos φ, sin θ sin φ, cos θ ) .

ex and ey define the GW polarization tensor in Eq. (6.4). Here we normalize and
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Figure 6.5: GW response function Trms(f). Vertical lines are plotted at multiples of
100 MHz.

redefine the GW response function as a dimensionless response function, namely,

T (Ω, φ, θ, ψ) ≡ δ̃φall

(ωh̃τ)
, (6.10)

where we assumed that GW has the form
∑

eAh̃A = h̃ (e+ cos 2ψ + e× sin 2ψ). ψ is
the polarization angle of GW. Integrating this function by φ, θ and ψ on the celestial
sphere and averaging lead to

T 2
rms(Ω) ≡ 1

4π

∫ 2π

0

dφ

∫ π

0

dθ sin θ

∫ 2π

0

dψ

2π
|T (Ω, φ, θ, ψ)|2.

The result of numerical calculation is shown in Fig. 6.5. All response functions
decrease above 100 MHz. This is the common feature of interferometers because the
GW signal is destructively integrated in the cavity and is canceled out. Below 100 MHz,
the response functions of SRI and LMI also decrease because the GW signal is partially
canceled out during round trips of light beams in the folded cavities. On the other
hand, in the case of FPMI, the GW signal is more constructively integrated in the
cavity and is more amplified, as the frequency is lower. At 100 MHz, SRI and LMI
have almost the same sensitivity, while FPMI has sensitivity worse by a factor ≈ 3.3.
This is because FPMI integrates GW signals less efficiently than other detectors. This
difference becomes significant when one takes the correlation of two detectors into
account, which results in a factor of (3.3)2 ∼ 10 in sensitivity to GWB energy density
Ωgw.

Let us consider the best sensitivity of SRI experimentally achievable with realistic
parameters, which is almost the same as that of LMI. We assume that the sensitivity is
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limited only by shot noise 4. The magnitude of shot noise is determined by laser power,
the arm length and the reflectivities of mirrors, and is calculated by the condition that
the phase shift due to GWs is equal to that of quantum noise [162],

|β| 〈δ̃Φall〉rms =

√
2~ω

ηI0

, (6.11)

where ω is the angular frequency of laser, η is the quantum efficiency of a photodetector,
I0 is original laser power, and

β ≡ RF − RE

1 − RF RE

.

The reason why β is needed in the left-hand side of the Eq.(6.11) is that, in Eq.(E.4),
the phase shift due to GWs must be converted into the amplitude of a sideband field.
Substituting Eqs.(6.6) and (6.10) leads to

h(Ω) =
1

τα′(Ω)Trms(Ω)

√
2~

ηωI0

,

where we defined

α′(Ω) ≡ |β α(Ω)| =

∣∣∣∣ RET 2
F

(1 − RF RE)(1 − RF RE e−4iΩτ )

∣∣∣∣ . (6.12)

We select L = 0.75 m so that GW signal resonates at 100 MHz, ω = 1.77×1015 rad sec−1

and η = 1. The sensitivity achievable at 100 MHz in an ideal situation is

h ≈ 7.8 × 10−21

(
1 W

I0

)1/2(
1.6 × 104

α′

)
Hz−1/2

with bandwidth ∼ 108/F Hz, where finesse is F ≡ π
√

RF RE/(1 − RF RE), which is
related to α′ by the relation F = π

√
α′RF /T 2

F at 100 MHz. Note that α′ ≈ 1.6 × 104

is realized with reflectivities, say, R2
F = 0.99996 and R2

E = (0.99998)3. When we select
the arm length L = 0.75 m, laser power I0 = 1 W and |α′| = 1.6 × 104, the best
achievable sensitivity with SRI is h ≈ 7.8 × 10−21 Hz−1/2 at 100 MHz with bandwidth
∼ 2 kHz. Note that our results can also be applied to detectors at other frequency
bands by tuning the arm length and shifting the peak of sensitivity.

In this section, we investigated the GW responses of interferometers at 100 MHz.
We considered three designs that took advantage of the first optical resonance due to
cavities and derived the GW response functions. In conclusion, SRI and LMI have
almost the same sensitivity at 100 MHz and FPMI has sensitivity worse by a factor of
3.3.

4Rough estimates of the displacement noise in the L-shaped SRI have been done. For typical
parameters of the experiment, thermal and radiation-pressure noises have hn ≈ 6.8 × 10−21 Hz−1/2

and hn ≈ 1.6 × 10−24 Hz−1/2, respectively. These noises are marginally below the goal sensitivity
of our experiment. Therefore, no improvement of the sensitivity beyond would be expected. A new
detector design, which solves the issue of the displacement amplification, is discussed in Chap. 7.
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Above conclusion in the detector sensitivity is theoretical one. That is, we de-
termined the best detector configuration from the point of view of shot-noise limited
sensitivity to GWs. However, in real experiments, there are many advantages and dis-
advantages of detectors that we have not considered here. One of the advantages of SRI
is the simplicity of a control system. SRI has only one degree of freedom for locking
the interferometer because clockwise and counterclockwise lights share light paths in
the cavity and the Sagnac part, while FPMI and LMI have three degrees of freedom
in operation, which are for cavities in both arms and the Michelson part. Another
advantage of SRI is the symmetric optical configuration of the cavity. This means that
clockwise and counterclockwise light in the cavity experience the same reflectivities of
mirrors. Thus, SRI is expected to have high tolerance to the imbalance of the reflectiv-
ities and relatively smaller laser frequency noise than other detectors. Even if we take
these facts into account, we can conclude that SRI is the best detector. These issues
should be investigated in more detail when one constructs real detectors.

6.3 Correlation of two detectors

6.3.1 Identification of GW response and noise in a SRI

In the previous section, we derived the GW response of an SRI and found that it can be
written in the form δ̃Φ(f, Ω̂) = α(f) δ̃φ(f, Ω̂), using the Fourier component of phase
shift due to GW during the round trip of light in a recycling cavity δ̃φ(f, Ω̂) and an
optical amplification factor of light in the cavity α(f). From Eqs. (6.7) and (6.8), the
concrete expressions are written as

α(f) = − RET 2
F

(RF − RE)(1 − RF RE e−8πifτ )
,

δ̃φ(f, Ω̂) = (1 − e−4πifτ )
ω

2πf
e−2πif(τ+Ω̂·X⃗/c)

∑
A

h̃A(f, Ω̂) eA(Ω̂)

:
[
(v̂ ⊗ v̂)HSRI(f, Ω̂ · v̂) − (û ⊗ û)HSRI(f, Ω̂ · û)

]
, (6.13)

where Ω̂ can be identified with ez in the previous section, and X⃗ is a position vector
of the mirror M1 (n12, n13, X1 in Fig. 6.1 can be identified with u, v, and X⃗ here,
respectively.). We define an arm response function like

T (f, Ω̂ · û) ≡ − e−2πifτ

2πfτ
HSRI(f, Ω̂ · û) , (6.14)

so that T gives unity in low frequency limit, as shown in Fig. 6.6. Using this response
function, we can rewrite Eq. (6.13) in a simple form,

δ̃φ(f, Ω̂) = 2 ωτ e−2πifΩ̂·X⃗/c (1 − e−4πifτ )

×
∑

A

h̃A eA :
1

2

[
(û ⊗ û)T (f, Ω̂ · û) − (v̂ ⊗ v̂)T (f, Ω̂ · v̂)

]
= 2 ωτ e−2πifΩ̂·X⃗/c (1 − e−4πifτ )

∑
A

h̃A(f, Ω̂) FA(f, Ω̂) (6.15)
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Therefore, comparing Eq. (6.15) with Eq. (5.8), we obtain

δ̃Φ
′
(f) ≡

∫
dΩ̂ δ̃Φ(f, Ω̂)

= κ(f) α(f) h̃(f) . (6.16)

where κ(f) ≡ 2 ωτ(1− e−4πifτ ). To identify h̃(f) and δ̃Φ
′
(f), we incorporate the extra

factor κ(f) α(f) into the noise spectrum5, that is,√
Pshot(f) = |κ(f) α′(f)|−1

√
Pqnoise(f)

= |κ(f) α′(f)|−1

√
2~ω

ηI0

(6.17)

where Pqnoise is the noise due to vacuum fluctuations. We assumed that shot noise is
a dominant noise source around 100 MHz. In Eq. (6.17), α(f) is replaced with α′(f)
defined in Eq. (6.12), since phase shift due to GW has to be converted into photocurrent
at the photo detector by multiplying a constant factor.

We identified the specific forms of GW signal and noise in this subsection. The GW

signal δ̃Φ
′
(f) completely corresponds to h̃(f) in Eq. (5.8), and can be calculated using

T in Eq. (6.14). The power spectrum of shot noise can be calculated with Eq. (6.17),
if experimental parameters are given.

6.3.2 Dependence of sensitivity on the relative locations be-
tween two detectors

The sensitivity to GWB is significantly influenced by the geometrical configuration
of two SRIs through the overlap reduction function γ when the wavelength of GW is
comparable to the size of a detector. In this section, we will perform detailed investi-
gation of the dependence of the overlap reduction function on the relative location of
two detectors in an experiment for the detection of GWB at 100 MHz.

The overlap reduction function can be calculated numerically from Eq. (5.10) using

the arm response function T given in Eq. (6.14), where the phase factor e2πifΩ̂·∆X⃗/c

plays an important role. To see this, we consider the four configurations of detectors
and calculate γ(f). The results are shown in Fig. 6.7 with the case of ”exact” and
”long wavelength limit”. The former is calculated with the full arm response function
T . The latter is calculated with T = 1, which is just plotted for reference, though
the approximation is not valid around 100 MHz. Each configuration of detectors is
characterized by the relative position ∆X⃗ = X⃗1 − X⃗2 and the relative angle β. Note
that X⃗I is the position vector of M1 of I-th detector. In the case of (a) ideal, γ(f)
rapidly decreases even though the detectors are completely colocated and coaligned,
because we defined the γ(f) including arm response functions. Case (b) T-shaped has

5Note that the derivation of shot noise is slightly different from that in the previous section, where
we have incorporated the angular response to GW into shot noise. However, here an angular averaging
is contained in the GW signals.
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Figure 6.6: Arm response functions of SRI as a function of fτ . Each plot is for
arccos(Ω̂ · û) = π/2, π/3, π/6, respectively, as shown by plot labels in the figure.

a behavior similar to that of (a) for the same reason. The arm response function is
needed to take the effect of the phase change of GW at high frequencies into account.
Cases (a) and (b) are similar, but have a subtle difference since the arms of detectors
are at different locations and experience different phases of GW. As a result, the overlap
of case (b) is a little worse than case (a). In the cases of (c) crossed and (d) stacked,
γ(f) also decrease more rapidly than in the long wavelength limit. This is because
the contribution of the GW phase change at high frequencies is added to that in the
long wavelength limit. Therefore, we cannot obtain γ(f) = 1 at 100 MHz with the
detectors where detector size and GW wavelength are comparable. It follows that
SNR is worsened by a factor of (0.377)−1 ≈ 2.65 at 100 MHz in contrast to the case
where long wave approximation is valid, even if the two detectors’ configuration is
optimal. One may expect unit response to be obtained by constructing much smaller
detectors. However, the total response of detectors δ̃Φ is worsened since the resonant
frequency of GW signal also depends on the detector size and is shifted upward. Thus,
this loss of sensitivity due to the phase change of GW is inevitable.

Next, we will fix the frequency at 100 MHz and consider γ(f). In fact, SRI has a
narrow frequency band and what we are most interested in is γ at 100 MHz. In Fig. 6.8,
the location of one detector is fixed, while the other detector is located at the same site
(∆X⃗ = 0) and the directions of arms are rotated. In this case, the magnitude of γ(f)
oscillates, however, it has the maximum peak at β = 0 and the minimum peak at β = π.
It is intuitive that the GW signal is better correlated when the directions of arms are
coaligned. In Figs. 6.9 and 6.10, the angle of detectors is fixed and the locations are
translated. In an initially coaligned case (β = 0) in Fig. 6.9, as expected, γ(f) has its
maximum at ∆X = 0 and keeps the moderate value in the range of ∆X = ±0.2 m. In
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Figure 6.7: Overlap reduction function in the case of four detector configurations.
Each setup is (a) ideal, ∆X⃗ = 0, β = 0, (b) T-shaped, ∆X⃗ = 0, β = π/2, (c) crossed,

∆X⃗ = (L/2, L/2, 0), β = π, (d) stacked, ∆X⃗ = (0, 0, L/2), β = 0, where the arm
length is selected as L = 0.75 m. The ”exact” means the calculation with arm response
function T and the ”long wavelength limit” T = 1. The latter is not valid around
100 MHz, but merely plotted for comparison. Note that the sign of γ(f) in (b) is
inversed for convenience of comparison.
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Figure 6.8: Overlap reduction function when the detector with L = 0.75 m is initially
colocated and coaligned and is rotated at the same location. β is the rotation angle.

an initially reversed case (β = π) in Fig. 6.10, an interesting feature can be seen. When
the detector is translated to the direction (û+ v̂)/

√
2, the peak of γ(f) is shifted. This

is because the overlap of the two detectors is better when their arms are overlapped
geometrically like (c) in Fig. 6.7.

Here we have considered a SRI as a detector configuration, and investigated the
degradation and location dependence of the overlap reduction function. However, the
property also hold for a Fabry-Perot Michelson interferometer because the transfer
function is almost the same as that of a SRI, though the sensitivity is slightly worse,
see Eqs. (6.8) and (6.9). Thus, the results we obtained in this subsection are general
features in an interferometric GW detector at high frequencies.

6.3.3 Sensitivity to GWB

We will describe the best location of detectors with respect to the sensitivity, and
calculate the sensitivity achievable with correlation analysis. From the results obtained
above, the best location is obviously colocated and coaligned, and gives γ(f)|100MHz ≈
0.377. As shown in Fig. 6.9, this value is hardly changed in the range of ∆X = ±0.2 m
for coaligned detectors. In an experiment, it is impossible to put the detectors in
completely colocated and coaligned location because of the restricted experimental
space of the optics. However, experimental detector configuration does not significantly
affect γ(f) if the detectors are nearly colocated and coaligned. Therefore, we fix it to
γopt = 0.377.

As for the power spectral density of noise in an SRI, one can calculate from
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Figure 6.9: Overlap reduction function when the detector with L = 0.75 m is ini-
tially colocated and coaligned (β = 0) and is translated in certain directions. Each
curve means the direction of translation. (+x, +y, 0) is the direction of (û + v̂)/

√
2,

(−x, +y, 0) is the direction of (û − v̂)/
√

2, and (0, 0, z) is the direction perpendicular
to the û v̂ plane.

Figure 6.10: Overlap reduction function when the detector with L = 0.75 m is initially
colocated and reversed (β = π) and is translated in certain directions. Each curve
means translation in the same direction as shown in Fig. 6.9.
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Eq. (6.17). We select the arm length of a detector as L = 0.75 m so that the GW
signal resonates at 100 MHz. With experimental parameters, ω = 1.77 × 1015 rad s−1

and τ = 1, the power spectral density of noise around 100 MHz is

Pi(f) ≈ 4.65 × 10−42

(
1.60 × 104

α′(f)

)2(
1W

I0

)
Hz−1, i = 1, 2. (6.18)

The factor α′ is called the optical amplification factor in a cavity and gives α′ ≈ 1.6×104

with the reflectivity of the recycling mirror, R2
F = 0.99996, and the reflectivity of

the other three mirrors, R2
E = (0.99998)3. The bandwidth is ∼ 2 kHz with these

reflectivities. Note that the noise power spectrum in Eq. (6.18) is that for optimally
incident GW and not angular-averaged, since the angular average is incorporated into
the overlap reduction function in the correlation analysis. To convert Eq. (6.18) to
angular-averaged one, the factor (2πfτ/ sin 2πfτ)2 has to be multiplied.

Substituting PI(f) and γopt into Eq. (5.16), and assuming that observation time is
T = 1 yr and that Ωgw(f) has a flat spectrum around 100 MHz (which is sufficient for
practical purposes [167]), one can calculate the sensitivity of two SRIs to GWB and
obtain

h2
0Ωgw ≈ 1.4 × 1014 at 100 MHz with L = 0.75 m. (6.19)

This figure is obtained with practically feasible parameters in a laboratory and by
assuming that the sensitivity is limited only by shot noise.

One might expect to improve the sensitivity with moderate technical development
in the near future or with a longer armlength (lowering resonant frequency). However,
it might be impossible to futher improved the sensitivity in this detector design, because
other noises would contribute to the sensitivity. The SRI amplifies not only GW signal
but also displacement noise of mirrors. Cosequently, a rough estimate shows that
radiation-pressure or thermal noise prevent the SRI improving the sensitivity. This
problem can be avoided by changing the detector design and usign ring-shaped cavity,
a so-called resonant speed meter [168], which is described in a latter chapter.

6.3.4 Cross-correlated noise

In the real world, correlated environmental and instrumental noises would contribute
to the cross-correlation signal of the detectors and mimic the presence of true GWB
signals. For the two detectors far separated, a number of correlated noise sources can be
ignored, while, for detectors close to each other like the case in this paper, there would
be many correlated noise sources. So, it is important to investigate the noise sources
in advance. In this subsection, we describe the possible noise sources and suggest some
preventive treatments for them.

It is useful to derive the condition for the noise so as not to impair the cross-
correlation search. Correlated noise in two detectors can be described by the cross-
spectral function Pc(f) defined by

〈ñ∗
1(f)ñ2(f

′)〉 ≡ 1

2
δ(f − f ′)Pc(f) .
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If 〈S2〉 ≫ 〈S〉2 in (5.11), the correlated noise does not affect the GWB search. From
Eqs. (5.7) and (5.12) by replacing h1,2(f) → n1,2(f), one can obtain the condition[

T

2

∫ ∞

−∞
dfPc(|f |)Q̃(f)

]2

≪ T

4

∫ ∞

−∞
dfP1(|f |)P2(|f |)|Q̃(f)|2 , (6.20)

where P1 and P2 are uncorrelated noises of each detector. Narrow band approximation
allows replacement of the integral in Eq. (6.20) with characteristic bandwidth ∆f ≈
f0/|α′|, f0 is a central frequency. Then, Eq. (6.20) is

Pc(|f0|) ≪
P1(|f0|)√

T∆f
, (6.21)

where P1(|f |) = P2(|f |) is used. For the parameters we used in the previous section,
T = 1 yr and α′ = 1.6 × 104, the condition is

Pc(|f0|) ≪ 2.3 × 10−5 P1(|f0|) ≈ 1.0 × 10−47 Hz−1 . (6.22)

Thus, the magnitude of noise with correlation should be much smaller than that of
uncorrelated noise. Note that this condition is not valid for transient correlated noise.
In the case, T in Eq. (6.21) is replaced with ∆T which is the duration of correlated
transient disturbance, and the condition (6.22) is weakened.

In general, the properties (magnitude, angular pattern, time dependence, etc.) of
correlated noise strongly depend on the details of the instruments. So, we devote our
attention to qualitative aspects of correlated noise.

• Thermal and radiation pressure noises
Thermal noise includes those of all optics such as mirrors, suspensions, etc.,
and radiation noise results from vacuum fluctuation. These noises would be the
loudest noise if one goes beyond the sensitivity in Eq. (6.19). However, these have
no correlation between two detectors in nature.

• Seismic noise
Seismic noise is a dominant noise source at low frequencies below ∼ 10 Hz in large
ground-based interferometers. However, the noise can be significantly suppressed
by a seismic attenuation system at high frequencies. Furthermore, one can also
place the detector on a stiff board to prevent the differential vibration mode
from coming into effect. We can safely conclude that seismic noise at ultra-high
frequencies is low enough to be ignored.

• Acoustic noise
Sound waves (supersonic waves at 100 MHz) around the two detectors would
produce a correlative change in the light path length by directly disturbing the
mirrors or perturbing the refraction index of gas. The noise can be reduced by
putting the detector into a vacuum chamber. Another way to avoid the noise is
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to insert an acoustic absorbent between the detectors. It is recommended that
both noise reduction methods are used together in case there is residual gas in
the vacuum chamber. In fact, the experiment in the air [50] shows no indication
of the acoustic noise, though the sensitivity is still far above than Eq. (6.19).

• Scattered light
Scattered light is also an awkward noise source when the detectors are closely sit-
uated. Preventive measures against scattered light should be taken. In addition,
it is effective to use separate laser sources with frequencies significantly shifted in
relation to one another, compared with the observation frequency, 100 MHz. A
simpler solution is to stack the detectors with a partition. According to Fig. 6.9,
the sensitivity is nearly optimized and hardly changed if the two detectors are
located in a range ±0.2 m.

• External electromagnetic fields
There would be many radio-frequency electromagnetic fields around 100 MHz,
such as those related to radio and television, which would depend on where
one lives. In experiment [50], such frequency bands were investigated and were
avoided before the experimental setup was constructed. Furthermore, an electro-
magnetic wave shield should be installed in case unanticipated electromagnetic
fields exist.

• Electric noise
One should be careful about electronic noises produced by measurement devices,
electric wires, and power supply. The most awkward thing among them is the
power supply because one usually uses an identical power supply. The problem
can be avoided if one uses separate batteries.

Therefore, in principle, all anticipated noise sources correlated between the two
detectors can be avoided. However, unexpected noise might exist in a real experiment.
It is useful for noise hunting to shift and rotate one of the detectors and compare the
behavior of the noise level, because most noises might strongly depend on the location
and angle of the detectors. Rotating one of the detectors by π/2, π, 3π/2 rad is a good
option for a detector configuration, since it hardly worsens the sensitivity as shown in
Fig. 6.8. It is also useful for the confirmation of the existence of real GWB to check
the location dependence of the sensitivity with the results in the section above.

6.4 Experimental search for GWB

6.4.1 Experimental setup

In the laboratory of National Astronomical Observatory of Japan (NAOJ), we have
developed a GW detector that consists of two SRIs, which are constructed on a single
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Figure 6.11: Optical design of the experiment with two SRIs, where optics are referred
to beam splitter (BS), recycling mirror (RM), transfer mirror (TM), end mirror (EM),
symmetric port (SP), antisymmetric port (AP), polarization beam splitter (PBS), Fara-
day isolator (FI), Pockels cell (PC), electro-optic phase modulator (EOM), half-wave
plate (HWP), and quarter-wave plate (QWP). The suffixes ”1” or ”2” attached to each
component indicate that the component belongs to IFO-1 or IFO-2, respectively. The
figure is provided by T. Akutsu [169].
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optical table [50]. In Fig. 6.11, the optical design of the experiment is shown. Hereafter
we refer to the two interferometer as IFO-1 and IFO-2.

Each interferometer has a 75 cm-baseline cavity in order to be sensitive to GWs at
100 MHz. The size of Sagnac interferometer, which is the part in front of the recycling
cavity, is relatively small (∼ 12.5 cm) and its contribution to GW signal is insignificant
compared to that of the cavity. Two SRIs are put within a range ∼ 10 cm so that the
overlap reduction function has nearly ideal value. The laser source is a Nd:YAG laser
with the wavelength 1064 nm and the power 0.5 W. The laser frequency is stabilized to
the recycling cavity by the Pound-Drever-Hall technique [170], using a radio-frequency
(RF) sideband (fRF = 85.4 MHz) modulated by EO1 in Fig. 6.12. The lasers of two
interferometers are independent and have no correlation between them. Pockels cells
are inserted in the recycling cavities and are used for calibration of GW signals. The
reflectivity of the recycling mirror is R2

F = 0.985 ± 0.005 and gives relatively low
optical amplification, α(100 MHz) ∼ 100. This is because this experiment is the first
step toward the direct detection of a GWB at 100 MHz.

GW signals are down-converted in frequency and are registered as output data,
as depicted in Fig. 6.12. Since the BS is not exactly balanced, small fraction of the
RF sideband leak into PD2. Hence, electrical signals at intermediate frequencies (IF),
fIF ≡ fGW − fRF ∼ 15 MHz, can be detected at PD2, where fGW is the frequency
of GWs. However, IF frequency is still too high to be sampled with an inexpensive
data acquisition (DAQ) system. The IF signals are subsequently down-converted into
audio-frequency (AF) signals at fAF ≡ fIF − fLO ∼ 3 kHz with a local oscillator (LO),
whose frequency is fLO = 14.696840 MHz.

The sensitivity to GW strain amplitude 6 is shown in Fig. 6.13. Red (solid) and
green (dotted) curves are for IFO-1 and IFO-2, respectively. For IFO-1, the best
sensitivity is 6.4×10−17 Hz−1/2 at 100.0 MHz, for IFO-2, 8.5×10−17 Hz−1/2 at 100.1 MHz

6.4.2 Data analysis

We define a cross-correlation statistic:

Z ≡ 1

T

∫ T/2

−T/2

dt

∫ T/2

−T/2

dt′ s1(t)s2(t
′)Q(t − t′) ,

which is the normalized (divided by T ) version of the cross-correlation signal, Eq. (5.5),
and is approximated to

Z ≈ 1

T

∫ fmax

fmin

df s̃∗1(f)s̃2(f)Q̃(f) . (6.23)

The mean and variance of Z are calculated, as well as Eqs. (5.9) and (5.12) except

6When the detector output is converted into detectable GW strain amplitude, it is assumed that
a GW with optimal polarization are propagating vertical to the interferometer plane.
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Figure 6.12: Schematic view of one of the interferometers [50]. DAQ: data aquisition
system, EO: electro-optic phase modulator, PD: photodetector, LO: local oscillator,
IF: intermediate frequency, and AF: audio frequency. Other acronyms are the same as
those in Fig. 6.11.

Figure 6.13: Noise curve of interferometers: IFO-1 (red, solid) and IFO-2 (green,
dotted) [50]. The peaks at 100.1 MHz are generated for calibration.
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for the division by T and the finite integration range, and are given by

µZ = 〈Z〉 =
3H2

0

20π2
2

∫ fmax

fmin

df |f |−3Ωgw(|f |)γ(|f |)Q̃(f) , (6.24)

σ2
Z = 〈Z2〉 − 〈Z〉2 =

1

2T

∫ fmax

fmin

df P1(|f |)P2(|f |) |Q̃(f)|2 . (6.25)

We will assume a frequency-independent spectrum of Ωgw. This assumption is well
motivated by the narrow band sensitivity of the detector. For the choice of the optimal
filter in Eq. (5.15),

Q̃(f) = K γ(f)

|f |3P1(|f |)P2(|f |)
,

Eqs. (6.24) and (6.25) become

µZ =
3H2

0

20π2
ΩgwK

[
2

∫ fmax

fmin

df
γ2(f)

f 6P1(f)P2(f)

]
,

σ2
Z =

K2

4T

[
2

∫ fmax

fmin

df
γ2(f)

f 6P1(f)P2(f)

]
.

Choosing the normalization constant 7 as

K =

[
2

∫ fmax

fmin

df
γ2(f)

f 6P1(f)P2(f)

]−1

,

we obtain

µZ =
3H2

0

20π2
Ωgw , σ2

Z =
K
4T

.

The SNR is defined as |µZ |/σZ , which gives the same formula as Eq. (5.16). Note
that the above choice of the normalization constant does not affect the SNR.

The observation has been done on 17 September 2007 (in Japanese standard time)
at Mitaka, Tokyo, Japan. The measurement time is T = 1070.5 sec. The data record is
divided into N = 439 segments. The cross correlation and its uncertainty are calculated
for each segment, yielding a set {ZI , σZI

} with I labeling the intervals. The ensemble
averages in Eqs. (6.24) and (6.25) are approximated by taking a weighted average over
all intervals:

µZ =
1

σ−2
Z

N∑
I=1

ZI

σ2
ZI

, σ−2
Z =

N∑
I=1

1

σ2
ZI

. (6.26)

As for the integration range in Eq. (6.23), we choose the range from 2.08 to 4.19 kHz
for AF signal, corresponding to a 2-kHz bandwidth around 100.1 MHz for GW signals.

The cross-correlation estimates, µZ and σZ , are shown in Fig. 6.14. Estimation of
µZ is plotted as the red filled circles. The black curves enclose the two-sided 90% C.L.
interval of µZ : [µZ − 1.65 σZ , µZ + 1.65 σZ ]. We obtained µZ = 4.9 × 10−12 sec−2 with
σZ = 3.7 × 10−12 sec−2 after the integration of 1070.5 seconds, still including µZ = 0

7The normalization constant has dimension of sec−3, then µZ and σZ have dimensions of sec−2.
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Figure 6.14: Estimated µZ (red filled circle) and its uncertain range µZ±1.65 σZ (black
solid curve), which corresponds to 90% C.L. intervals [50].

within a 90% C.L. range, µZ±1.65 σZ . Therefore, no signature of the existence of GWB
was found. We can also conclude that a random noise dominates the cross-correlation
signal, because the uncertainty σZ decreases proportional to T−1/2.

No detection of GWB allows us to derive the upper limit on Ωgw. From Eq. (6.26),
we finds the upper limit [50], defined as a one-sided 90% confidence level corresponding
to µZ + 1.28 σZ ,

h2
0Ωgw|100 MHz ≤ 6.0 × 10+25 .

This limit is the first step of the experiment, and is not stringent at all. However, we
improved the previous constraint on the GWB [45] by eight orders of magnitude.



Chapter 7

Resonant speed meter

In the previous chapter, it has been shown that a L-shaped SRI can amplify GW
signal at resonant frequencies. However, mirror displacement noise is also amplified.
When we increase the finesse of a cavity and improve the sensitivity beyond the goal
sensitivity in the previous section, the amplified displacement noise would limit the
sensitivity. Thus, it is a crucial defect of the L-shaped SRI.

In this chapter, we propose a resonant speed meter [168], as a displacement noise-
canceled configuration 1, based on a ring-shaped synchronous recycling interferometer.
In this method, the displacements of mirrors are sensed at different times with the
interval ∆t. At the frequency (∆t)−1, the phase of the mirror motion rotates by 2π
during one interval ∆t. This means that the beams experience the mirror displacement
with the same phase. Thus, the mirror displacements at different times can be canceled
by subtracting the signals of these beams. Note that this cancellation occurs at the
multiple frequencies of (∆t)−1, and that residual displacement noise remains at other
frequencies, as is well known in a Sagnac interferometer [175]. On the other hand, the
cavity has to be designed to amplify the GW signals. Such a design is possible if one
takes advantage of the quadrupole nature of GWs. At the noise cancellation frequency
(∆t)−1, if one beam propagates in one direction during the first half period and in the
right-angled direction during the other half period, the GW signal can survive. For the
beam propagating on the same path in the opposite direction, the GW signal with the
opposite sign can also survive. Then, subtracting the two beams gives an amplified GW
signal. The remarkable feature of this interferometer is that, at certain frequencies,
gravitational-wave signals are amplified, while displacement noises are not.

1Displacement noise-free interferometry is originally proposed in Kawamura and Chen [171], and
has been developed by [172, 173, 174]. However, since all design uses no cavity, the shot-noise level is
the same as that of a Michelson interferometer. The resonant speed meter is the first design, which
uses a cavity.

101
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Figure 7.1: Design of a resonant speed meter. A synchronous recycling cavity is com-
posed of the four mirrors M1 −M4. The electric fields of a CCW beam Aℓ, Bℓ, Cℓ, and
Dℓ are shown. The fields of CW beam are obtained by reversing along the y axis.

7.1 Detector design and sensitivity

7.1.1 Detector response

The detector configuration of the resonant speed meter is shown in Fig. 7.1. Laser
beams divided at the balanced beam splitter Mb are reflected by completely reflective
mirrors Ma and Mc, and enter the (ring-shaped) synchronous recycling cavity, which
is formed by an input mirror M1 and three high-reflective mirrors M2 − M4. In the
cavity, each beam circulates clockwise (CW) and counterclockwise (CCW), then leaves
the cavity and is finally recombined at the beam splitter Mb

2. First, we will derive
the detector responses to mirror displacements and GWs in the resonant speed meter,
and show that, at certain frequencies, the displacement noises can be suppressed, while
GW signals are amplified. We also show that the detector sensitivity to GWs can be
improved proportional to the circulating number of light in the cavity.

M1 has an amplitude reflectivity and transmissivity (RF , TF ). As for the three other
mirrors M2, M3, M4, one can deal with the reflectivities introducing the composite
reflectivity RE. For simplicity, none of the mirrors have loss. Let us denote the
displacement of M1, M2, M3, and M4, in the absence of GWs, as y1(t), x2(t), y3(t), and
x4(t), respectively, where the coordinates x and y are defined in Fig. 7.1. Electric fields

2This design is well known as a laser-ring gyroscope. It picks up the Earth rotation and shifts
the frequency of the counterpropagating beams, which is called the Sagnac effect. The effect can be
ignored when the size of the detector is relatively small. However, for a large detector, some treatment
must be done to compensate the phase shift.
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in the cavity are phase-shifted due to the GWs and the displacements of the mirrors.
The field circulating CCW (denoted by fixing the subscript ℓ) can be written as

Dℓ(t) = RECℓ(t − 4τ)

× exp
[
iφ

(g)
ℓ (t) +

√
2 iω/c {−x2(t − τ) + y3(t − 2τ) + x4(t − 3τ)}

]
,(7.1)

where τ ≡ L/c, L is the side length of the cavity, and ω is the angular frequency of

laser light. φ
(g)
ℓ (t) is the phase shift created by the GW and is expressed as the sum of

each-side contribution during the propagation in the cavity,

φ
(g)
ℓ (t) ≡ φ21(t) + φ32(t − τ) + φ43(t − 2τ) + φ14(t − 3τ) , (7.2)

where, say, φ21(t) is the phase shift due to the GW during the light trip from M2 to
M1. The junction conditions at M1 are

Cℓ(t) = RF Dℓ(t) e−
√

2 i ω y1(t)/c + TF Aℓ(t) , (7.3)

Bℓ(t) = TF Dℓ(t) − RF Aℓ(t) e
√

2 i ω y1(t)/c . (7.4)

Equations (7.1), (7.3), and (7.4) are solved separately from the CW fields, and give

Bℓ(t) = −RF Aℓ(t) e
√

2 i ω y1(t)/c +
∞∑

k=1

T 2
F Rk

ERk−1
F Aℓ(t − 4kτ)

× exp

[√
2 i ω y1(t − 4kτ)/c

+i
k∑

k′=1

{
φ

(g)
ℓ

[
t − 4(k′ − 1)τ

]
+ φ

(d)
ℓ

[
t − 4(k′ − 1)τ

]}]
,

where φ
(d)
ℓ (t) is the phase shift due to the displacement of the mirrors and is expressed

by

φ
(d)
ℓ (t) ≡

√
2 ω

c

[
−x2(t − τ) + y3(t − 2τ) + x4(t − 3τ) − y1(t − 4τ)

]
. (7.5)

We assume that the carrier field at M1 is Aℓ(t) = A0e
iωt and nonperturbed cavity length

satisfies the resonant condition 4ωτ = 2πn, n = 1, 2, · · · . In addition, |φ(g)
ℓ | ≪ 1,

|φ(d)
ℓ | ≪ 1, and ω |y1|/c ≪ 1 are assumed. Using these assumptions and defining

Tℓ(t) ≡ Bℓ(t)/Aℓ(t), we obtain

Tℓ(t) ≈ −RF

[
1 +

√
2i ω y1(t)/c

−T 2
F

∞∑
k=1

Rk
ERk−2

F

{
1 +

√
2i ω y1(t − 4kτ)/c

+i
k∑

k′=1

(
φ

(g)
ℓ

[
t − 4(k′ − 1)

]
+ φ

(d)
ℓ

[
t − 4(k′ − 1)

])}]
. (7.6)



7. Resonant speed meter 104

Fourier transformation of Eq. (7.6), it can be written in the form,

T̃ℓ(Ω) =
√

2 i ωβ′(Ω)ỹ1/c + iα′(Ω)(φ̃
(g)
ℓ + φ̃

(d)
ℓ ) , (7.7)

β′(Ω) ≡ −RF + REe−4iΩτ

1 − RF REe−4iΩτ
,

and α′(Ω) is defined in (6.12). Here β′(Ω) and α′(Ω) are optical amplification factors
due to the cavity. According to the axisymmetry of the system along the y axis, the
transfer function for the CW beam is easily obtained,

T̃r(Ω) =
√

2 i ωβ′(Ω)ỹ1/c + iα′(Ω)(φ̃(g)
r + φ̃(d)

r ). (7.8)

The differential of the two beams is detected at the photodetector, and gives

T̃ (Ω) ≡ T̃r(Ω) − T̃ℓ(Ω)

= −iα′[(φ̃(g)
r − φ̃

(g)
ℓ ) + (φ̃(d)

r − φ̃
(d)
ℓ )

]
,

φ̃(d)
r − φ̃

(d)
ℓ =

2
√

2 i ω

c
e−2iΩτ sin Ωτ (x̃2 + x̃4) . (7.9)

At this stage, the displacements ỹ1 and ỹ3 in Eqs. (7.7) and (7.8) are automatically
canceled out at any frequencies, because the CW and CCW beams simultaneously
experience the displacement of M1 and M3

3. In addition, at the frequencies that
satisfy Ωτ = nπ, n = 1, 2, · · · , Eq. (7.9) gives exactly zero, then all displacement
noises vanish. This is because the CW and CCW beams in the cavity experience
the displacement of M2 and M4 with the same phase, though the time of reflection is
shifted by multiples of the period. Therefore, in our detector, displacement noises in
the cavity are not amplified around the cancellation frequencies, though the cavity is
on resonance.

Suppose that a GW propagates in the direction vertical to the detector plane with
the polarization along the direction M1-M2 and M1-M4. In the transverse-traceless
gauge, it can be written as hTT (t, z) = h(t − z/c)[u ⊗ u − v ⊗ v] , where u and v are
unit vectors directed from M1 toward M2 and M4, respectively. Let the detector be
on the x − y plane and set z = 0, for simplicity. The GW-induced phase shift of light
during the trip from Mi to Mj is given by [176]

φ̃ij(Ω) = ±h̃ω/Ω × e−iΩτ/2 sin(Ωτ/2). (7.10)

The positive and negative signs correspond to the vertical and horizontal propagations
in Fig. 7.1. h̃ is the Fourier component of GW amplitude. From Eq. (7.2) and the
counterpart for the CW beam, the Fourier component of the total GW response is

φ̃(g)
r − φ̃

(g)
ℓ =

8i h̃ω

Ω
e−2iΩτ cos(Ωτ) sin2(Ωτ/2) . (7.11)

3The arrival times of light at M1, or M3 depend on the displacement of M2 and M4. However, it
is the order of O(x2/L2) and can be ignored.
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So far, we have ignored the contribution of displacements at the mirrors in the
Sagnac part, Ma, Mb, and Mc, in Fig. 7.1. In fact, these displacements are not canceled,
and will contribute as residual noise. The contribution is

φ̃(s)
r − φ̃

(s)
ℓ = −

√
2ω/c (x̃a − x̃b + x̃c),

where x̃a, x̃b, and x̃c are Fourier components of the displacements of the mirrors, Ma,
Mb, and Mc.

Strictry speaking, in principle, the residual displacement noise can be canceled if
the Sagnac lengths are made comparable to the cavity length. However, the created
dip on a noise curve is too narrow to be practically useful, because beams sense the
mirror displacement at the different moments with large time lag (before entering and
after leaving the cavity). Therefore, we will not consider such a option here.

Figure 7.2: GW response T̃ (g)
rms(Ω) (upper figure), and displacement responses T̃ (d)

rms(Ω)

and T̃ (s)
rms(Ω) (solid and dashed lines in the lower figure, respectively). Each quantity is

normalized to be dimensionless. The reflectivities of mirrors are RF = 0.99 and RE = 1
for the illustration, which corresponds to α′ ≈ 200.

Let us define each contribution of the total detector output as

T̃ (g)(Ω) ≡ iα′(φ̃(g)
r − φ̃

(g)
ℓ ),

T̃ (d)(Ω) ≡ iα′(φ̃(d)
r − φ̃

(d)
ℓ ), (7.12)

T̃ (s)(Ω) ≡ φ̃(s)
r − φ̃

(s)
ℓ . (7.13)
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Assuming that the magnitude of disturbances at each mirror is the same (the phase
is not), we define x̃rms =

√
〈|x̃i|2〉, where i = 1, 2, 3, 4, a, b, c, and 〈· · · 〉 denotes the

ensemble average. Then, root mean squares of Eqs. (7.12) and (7.13) are

T̃ (d)
rms(Ω) =

4ω

c
|α′ sin Ωτ | x̃rms , (7.14)

T̃ (s)
rms(Ω) =

√
6 ω

c
x̃rms . (7.15)

The GW response T̃ (g), and the displacement responses T̃ (d)
rms and T̃ (s)

rms, are shown in
Fig. 7.2 as a function of normalized frequency Ωτ/π. The GW signal resonates at
Ωres = 2π× (2m− 1)/2τ , while the cancellation of the displacement noise in the cavity
occurs at Ωcancel = 2π×n/2τ , where m,n = 1, 2, · · · . For m = n = 1, the GW signal is
amplified, while the cavity displacement noise is not, which can be explicitly seen from
Eqs. (7.9) and (7.11) (In a L-shaped synchronous recycling interferometer in Chap. 6,
Ωres = 2π × (2m − 1)/4τ and Ωcancel = 2π × 2n/4τ . Then, no solution exists.). Note
that, in Fig. 7.2, the displacement response nulls at cancellation frequencies are so sharp
because of the cavity enhancement of the residual noise around the frequencies. The
essential is that the degeneracy between the amplification frequencies for GW signal
and displacement noise is broken. Thus, there exist the frequencies where the GW
signal is amplified and the displacement noise is canceled.

The noise cancellation mechanism is the same as that of a speed meter [177, 178,
179, 180, 181]. This can be understood explicitly in a time domain. From Eq. (7.5)
and the CW counterpart, the round-trip displacement response in the cavity around
the cancellation frequency Ωres can be written as

φ(d)
r (t) − φ

(d)
ℓ (t) =

√
2 ω

c
[x2(t − τ) − x2(t − 3τ) + x4(t − τ) − x4(t − 3τ)]

∼ 2
√

2 ωτ

c

(
δΩ

Ωres

)
[v2(t − τ) + v4(t − τ)] ,

where δΩ is detuned frequency from the resonance, and we used

x2(t − τ) ≈ x2(t − 3τ) + 2τ

(
δΩ

Ωres

)
v2(t − τ) .

Therefore, this detector senses not the mirror positions but the mirror velocities. More-
over, the GW signal is amplified by the resonant cavity. This is the reason why we call
it a resonant speed meter.

7.1.2 Noise curves

The signal-to-noise ratio (SNR) can be calculated by SNR = T̃ (g) / (T̃ (d)
rms + T̃ (s)

rms + T̃ (q)).
Here we added quantum noise T̃ (q), which has a frequency-independent spectrum. In
Fig. 7.3, the noise curve of each component is shown. For the illustration of the noise
cancellation, we choose the displacement noise significantly dominant, namely, x̃rms =
10 x̃shot at Ωτ/π = 1, where x̃shot ≡ T̃ (q) c/ω (Note that whether the displacement
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noise is dominant or not depends on the detection frequencies.). Around Ωτ/π = 1,
cavity displacement noise is canceled. The cancellation does not exactly occur at other
frequencies and the residual noise creates a dip on the displacement noise spectrum at
the cancellation frequencies. The bandwidth of the dip is determined by the optical
path length between M2 and M4, in other words, by the optical time lag that CW
or CCW beams experience the displacements of M2 and M4. The time lag is 2τ and
gives the factor sin Ωτ in Eq. (7.14). The total sensitivity at Ωτ/π = 1 is limited by
residual displacement noise in the Sagnac part (or shot noise if the displacement noise
is relatively small). However, both noises decrease proportional to α′ because of the
amplification of the GW signal. On the other hand, the displacement noise of the
cavity mirrors is independent of α′, but is already canceled around Ωτ/π = 1. Thus,
within the narrow bandwidth, the total noise level diminishes as α increases.

In Fig. 7.4, the dependence of the relative total noise curve on α′ is shown. The
noise cancellation allows us to improve the sensitivity, being proportional to α′ without
being limited by displacement noises.

7.2 Quantum noise in a RSM

In the previous section, we derived the response of the RSM, and illustrated the sen-
sitivity to GWs, where the displacement noise of a cavity is completely canceled at
the resonant frequencies. The analysis is done only in classical regime, where forces
on the mirrors have classical origins. In quantum mechanics, however, vacuum fluc-
tuations unavoidably come into the system and contribute to noises (shot noise and
radiation-pressure noise) [182, 183]. Particularly, radiation-pressure noise is caused by
the coupling between electromagnetic fields of vacuum fluctuations and carriers, and
have quantum origins. Consequently, it should be checked whether the RSM works
well even for quantum noise or not. If the radiation-pressure noise is canceled, the
RSM could be a quantum nondemolition (QND) interferometer [184, 185]. Hence, it
is also interesting to investigate how is the standard quantum limit (SQL) [186] (see
also, [184] for the review) of the RSM, and whether the sensitivity of the RSM could
overcome the SQL or not.

Recent works on quantum noise in a laser interferometer are based on a quantum
formalism by Kimble et al. [185]. According to the formalism, we will calculate quan-
tum noise in the RSM. Brief review of the quantum noise in a Fabry-Perot Michelson
interferometer (FPMI) is provided in Appendix F.

7.2.1 Input-output relation

An electromagnetic field at the time t is written as

Ed(t) = [D + Ed1(t)] cos ωt + Ed2(t) sin ωt , (7.16)

Ed1,2(t) =

√
4π~ω

Ac

∫ ∞

0

(d1,2 e−iΩt + d†
1,2 eiΩt)

dΩ

2π
.
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Figure 7.3: Relative noise curves of a resonant speed meter. The curves, ”cavity”,
”Sagnac”, and ”shot” are the displacement noise in the cavity, the displacement noise
in the Sagnac part, and quantum (shot) noise, respectively. The curve ”total” is the
sum of these three noises. The reflectivities are RF = 0.99 and RE = 1 (α′ ≈ 200 at
Ωτ/π = 1).

Figure 7.4: Dependence of relative total-noise curve on α. Solid, dashed, and dot-
ted curves are when α′ ≈ 200, 2000, 20000 at Ωτ/π = 1, corresponding to RF =
0.99, 0.999, 0.9999, respectively, and RE = 1.
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The subscript of the field E indicates at where the field is defined. D is the amplitude
of a carrier field, ω is the angular frequency of carrier light, and A is the effective
cross-section area of a beam. The fields in the RSM are defined in Fig. 7.5. In this
section, we set the reflection of the mirrors RF = R and RE = 1 with no loss.

Figure 7.5: Electromagnetic fields in a RSM.

Carrier fields

With the input laser amplitude D, input laser power I0 is given by

I0 =
Ac

8π
D2 .

Since CW and CCW beams are symmetric in the case of carrier fields, we consider
only CW beam (fixed the subscript r). From the relations

Ur = D/
√

2, Ar = Br ,

Vr = −R Ur + T Br, Ar = R Br + T Ur ,

the carrier-field amplitude Ar in the cavity is

Ar =
T

1 − R

D√
2

.

Thus, the laser power inside the cavity is

Ic =

(
T

1 − R

)2
I0

2
. (7.17)
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Sideband fields

Each field is related like

uℓ =
1√
2
(d + p), ur =

1√
2
(d − p) ,

q =
1√
2
(vr − vℓ) , (7.18)

at the beam splitter, and

vr = −R ur + T br, vℓ = −R uℓ + T bℓ ,

ar = R br + T ur, aℓ = R bℓ + T uℓ , (7.19)

at the recycling mirror M1.
In the recycling cavity, we will first consider only CW beam (fixed the subscript

r). The equations for the CCW beam is easily obtained from those for the CW beam.
The fields before and after one round trip in the cavity are related by

Ebr(t) = Ear(t − 4τ − ∆tr) , (7.20)

where the perturbation of the retarded time ∆t comes from that due to GWs and
radiation pressure:

∆tr = ∆tGW
r + ∆tRP

r .

Here we assume no classical noise, perturbing mirror positions. Substituting Eq. (7.16)
into Eq. (7.20) and using the resonant condition 4ωτ = 2πn, n = 1, 2, · · · and the
condition ∆tr ≪ τ , the fields inside the cavity are approximately related as

br1 = e4iΩτar1 (7.21)

br2 = e4iΩτar2 + ω

√
2Ic

~ω

[
∆̃t

RP

r + ∆̃t
GW

r

]
, (7.22)

where Eq. (7.17) is used. Note that Eqs. (7.21) and (7.22) are valid up to the first order
of the sideband amplitude and ∆̃tr. As for the CCW beam, b̃ℓ1 and b̃ℓ2 can be obtained
by changing the subscripts r ↔ ℓ and 2 ↔ 4 in Eqs. (7.21) and (7.22).

Radiation pressure

Radiation pressure is exerted on all mirrors in the cavity, and fluctuates them. How-
ever, since CW and CCW beams senses the displacement of the mirrors M1 and M3

simultaneously, the radiation pressure noise at M1 and M3 cancels when two beams
are recombined at the beam splitter. Therefore, we do not take M1 and M3 into ac-
count, and the radiation-pressure noise comes from M2 and M4. For the CW beam,
the retarded time due to the mirror displacements is

∆tRP
r =

√
2

c
[x2(t − 3τ) + x4(t − τ)] . (7.23)
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The classical part of radiation pressure force exerted on M4 is given by

FRP(t) =

√
2W

c
=

A
2
√

2π

[
Ē2

ar(t − 3τ) + Ē2
aℓ(t − τ)

]
.

W is the power of the electromagnetic field, and Ē2 means E2 is time-averaged over
the time scale ω−1. The fluctuating part of the radiation pressure is

δFRP(t) =
A

2
√

2π
Ar [Ear1(t − 3τ) + Eaℓ1(t − τ)]

=
2
√

~ωIc

c

∫ ∞

−∞
(ar1 e3iΩτ + aℓ1 eiΩτ ) e−iΩt dΩ

2π
.

We assume that the mirrors are at the balanced position by classical radiation pressure
and gravity. Consequently, from the equation of motion, ẍBA

4 (t) = δFRP (t)/m, the
Fourier component of x4 is obtained,

x̃4 = −2
√

~ωIc

mΩ2c
(ar1 e3iΩτ + aℓ1 eiΩτ ) .

As for M2, x̃2 can be obtained by changing the subscripts r ↔ ℓ and 2 ↔ 4,

x̃2 = −2
√

~ωIc

mΩ2c
(aℓ1 e3iΩτ + ar1 eiΩτ ) .

Therefore, the Fourier component of Eq. (7.23) is

∆̃t
RP

r =

√
2

c

[
x̃2e

3iΩτ + x̃4e
iΩτ

]
,

= −4
√

2~ωIc

mΩ2c2
e4iΩτ

[
ar1 + aℓ1 cos 2Ωτ

]
. (7.24)

As for the CCW beam, ∆̃t
RP

ℓ can be obtained by changing the subscripts r ↔ ℓ and
2 ↔ 4 in Eq. (7.24).

At ultra-high frequencies, there is an awkward issue that the mirror does not re-
spond to the radiation pressure as a rigid body. In other words, the fractional piece
of the mirror can respond the radiation pressure. Consequently, one has to use an
effective mirror mass for m in the above equations. For an accurate estimate of the
effective mirror mass, one has to perform fully numerical calculations such as finite-
element simulations. However, it can be roughly estimated with the beam cross-section
area and the sound speed in the material of the mirror as

meff(f) = ρA cs

f
,

where ρ is the density of the mirror material, A is the beam spot size, cs is the sound
speed in the material of the mirror, and f0 is an observation frequency. In the case of
a fused silica, ρ = 2.22 g/cm3, cs = 5.97 × 10−3 cm. For A ≈ 1 mm and f = 100 MHz,
the effective mass is meff ≈ 1.4 × 10−4 g. This means that the radiation-pressure noise
is ∼ 7500 times larger than that in the rigid mirror at the same frequency.
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GW signal

From Eq. (7.11), the retarded time due to GWs for the CW beam is

∆̃t
GW

r =
4h̃

iΩ
e2iΩτ sin2(Ωτ/2) cos Ωτ . (7.25)

For the CCW beam, ∆̃t
GW

ℓ can be obtained by changing the overall sign in the right-
hand side of Eq. (7.25).

Total input-output relation

Combining Eqs. (7.18), (7.19), (7.21), (7.22), (7.24), and (7.25) and expressing the
output field q with the input field p, we can finally obtain the total input-output
relation:

q1 = e2iΨ p1

q2 = e2iΨ [p2 − KRSM p1] +
√

2KRSM eiΨ

(
h̃

hSQL

)

where

KRSM(Ω) ≡ 16ωIc

mΩ2c2

T 2

1 + R2 − 2R cos 4Ωτ
sin2 Ωτ , (7.26)

Ψ(Ω) ≡ arctan

[
1 + R

1 − R
tan 2Ωτ

]
+

π

2
,

hSQL(Ω) ≡
√

2~
mc2 sin2 Ωτ

(
tan Ωτ

tan(Ωτ/2)

)
. (7.27)

7.2.2 Spectral density

We define the output field detected by the homodyne measurement with an arbitrary
phase ζ:

qζ = q1 cos ζ + q2 sin ζ

= e2iΨ [p1 cos ζ + (p2 − KRSM p1) sin ζ] +
√

2KRSM eiΨ sin ζ

(
h̃

hSQL

)
.

(7.28)

We assume that the input state is in a vacuum state. The same procedure from
Eq. (F.7) to Eq. (F.8) in Appendix F yields the noise spectral density

Sh(Ω) =
h2

SQL

2

[
1 + (cot ζ − KRSM)2

KRSM

]
. (7.29)
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Figure 7.6: KRSM when R = 0.99 and I0 = 100 W (solid curve), R = 0.999 and
I0 = 100 W (dashed curve), R = 0.99 and I0 = 20 W (dotted curve), with parameters
ω = 1.77 × 1015 rad sec−1, L = 1.5 m and m = 10−4 g (corresponding to the effective
mirror mass at 100 MHz.). These parameters are just for an illustrative purpose, and
the corresponding radiation-pressure noise is negligibly small.

Since the fields in Eq. (7.28) are linear with respect to the amplitude, the spectral
density can be decomposed into three parts: shot noise, radiation-pressure noise, and
correlation noise. Devoting our attention to the mirror mass, each noise contribution
in the spectral density is given by

Sshot
h =

h2
SQL

2

1

KRSM sin2 ζ
,

SRP
h =

h2
SQL

2
KRSM , (7.30)

Scor
h = −h2

SQL cot ζ . (7.31)

Since the coefficient KRSM is proportional to the laser power in the cavity, the shot
noise and the radiation-pressure noise are inversely proportional and proportional to
the power, respectively. This implies that, if the homodyne angle is selected as ζ = π/2
so that the quadrature amplitudes have no quantum correlation between them, there
is a minimum noise level at a certain frequency with fixed power. The noise level gives
the SQL, which is

Sh ≥ h2
SQL =

2~
mc2 sin2 Ωτ

(
tan Ωτ

tan(Ωτ/2)

)2

.

The equality is satisfied when KRSM = 1, and gives the definition in Eq. (7.27).
Can we overcome the SQL with quantum correlation in Eq. (7.31)? To minimize the

noise, it is obvious from Eq. (7.29) that the homodyne phase should be selected so that
ζFD(Ω) = arccot[KRSM(Ω)], which is frequency-dependent. However, since the RSM has
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Figure 7.7: hSQL with the mirror mass m = 10−4 g (corresponding to the effective
mirror mass at 100 MHz.).

good sensitivity only in a narrow frequency band, the frequency-independent homodyne
phase is adequate for us to optimize the noise at a resonant frequency. Therefore, the
optimized homodyne phase at the first resonance of the RSM, Ωres = π/τ , is ζres = π/2.
In this case, the quantum correlation vanishes, and one cannot circumvent the SQL.
This is a natural consequence, because, in the RSM, the radiation-pressure noise is
already canceled at the resonant frequency, as one can see from Eqs. (7.26) and (7.30).
The plots of KRSM and hSQL around the resonant frequency are shown in Fig. 7.6 and
Fig. 7.7.

In conclusion, in the RSM, the displacement noise including the radiation-pressure
noise is automatically canceled, in contrast to the L-shaped SRI, in which the displace-
ment noise is amplified. However, the SQL is not circumvented in the RSM, because
the cancellation stems from a classical correlation. Thanks to the cancellation, the sen-
sitivity at the resonant frequency is limited by shot noise, and is improved more and
more by increasing both the finesse of the cavity and the laser power. Furthermore, it
allows us to lower the resonant frequency by enlarging the detector size and to enhance
the sensitivity to GWs, not being hindered by the displacement noise.

7.3 Sensitivity to GWB

In this section, let us calculate how much sensitivity to GWB one can achieve with two
RSMs. According to the cancellation of the displacement noise of the cavity mirrors, the
sensitivity of the RSM to GWB is limited only by shot noise 4. Since the observational
bandwidth of the RSM is narrow, the integrand of the formula for the SNR can be

4Residual noise in the Sagnac part cannot be canceled. However, it could be ignored because no
amplification of the displacement noise occurs, while the GW signal is amplified.
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regarded as frequency-dependent. So, Eq. (5.16) can be approximated to

SNR ≈ 3H2
0

10π2

√
T

[
2 ∆f(f0)

γ2(f0)Ω
2
gw(f0)

f6
0 P1(f0)P2(f0)

]1/2

,

where f0 is the resonant frequency, ∆f is the observational bandwidth. We assume
that the overlap reduction function is γopt = 0.377 at the resonant frequency, as well
as that for L-shaped SRI in Sec. 6.3.3 5. For SNR = 1, the minimum reachable Ωgw is

Ωmin
gw (f0) ≈

10π2f3
0

3H2
0γopt

√
P1(f0)P2(f0)

2 T∆f(f0)
.

If we select the observation time T = 1 yr and conservative parameters I0 = 100 W
and R = 0.99999, Pi|100MHz ≈ 1.86 × 10−47 and ∆f |100MHz ≈ 100 MHz/F ≈ 160 Hz.
Then, Ωmin

gw |100MHz ≈ 1.5 × 109. For advanced parameters I0 = 1000 W and R =
0.999999, Pi|100MHz ≈ 1.86 × 10−50 and ∆f |100MHz ≈ 16 Hz. Then, Ωmin

gw |100MHz ≈
1.5×106. At 100 MHz, the limit is still weak and is not so interesting for cosmologists. If
the detector size is larger, the resonant frequency f0 = c/(2L) is lower. It is interesting
to consider the sensitivity at relatively lower frequencies. The noise power and the
bandwidth also scale as Pi ∝ f 2

0 and ∆f ∝ f0, respectively. Then, Ωmin
gw (f0) scales

proportional to f
9/2
0 . Consequently, the limit to Ωgw is drastically improved by enlarging

the detector size, though, of course, the detector size is practically restricted on the
Earth. In Fig. 7.8, the sensitivity achievable with two large RSM is plotted.

At 1−100 MHz, the sensitivity to GWB is not good and is less interest in a cosmo-
logical context. However, at lower frequencies corresponding to a relatively large-scale
detector, the sensitivity can overcome the critical energy density of the universe and
even the indirect bound due to the big-bang nucleosynthesis.

5Strictly speaking, γ for RSMs and SRIs are slightly different, but it is negligible.
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Figure 7.8: Sensitivity of the RSMs to GWB. The plots are the sensitivity to GWB
with the conservative parameters (red solid curve) and with the advanced parameters
(red dashed curve), critical energy density of the universe (black dotted line), and the
limit due to big-bang nucleosynthesis (black dot-dashed line). The detector size L
corresponding to the resonant frequency is shown on the upper axis.



Chapter 8

Conclusions

8.1 Summary

In this thesis, we studied the general framework of the search for a cosmological GWB,
focused on a laser-interferometric GW detector. Such a search is well motivated by
the GWB created in the early universe. Particularly, the quintessential inflation and
the pre-big-bang model generate a large GWB at high frequencies. On the other hand,
a large-scale laser-interferometric detector on the ground is well developed, and the
second-generation detectors, which can reach the theoretically interesting range of the
model parameters and could directly detect the GWB, are underway.

First, we investigated the search for the non-tensorial polarization mode of a GWB
with large-scale advanced detectors on the Earth such as LIGO and VIRGO. In the
theories with extra dimensions and the modified gravity theories, the extra degrees of
freedom allows the GWB to have scalar and vector modes besides the tensor mode
in the general relativity. To search those extra polarization modes, we extended the
conventional formalism of a cross-correlation analysis for the tensor mode to the non-
tensorial polarization modes. Then, we calculated the sensitivity to such GWBs. As
a result, we found that interferometric GW detectors is capable of detecting the non-
tensorial mode with almost the same SNR as the tensor mode. We also discussed the
detectability with the real detector pairs and derived the detectable energy density of
the GWB.

In the latter of the thesis, we studied the search for a GWB at ultra high frequencies.
Since the frequency band corresponds to the epoch of the extremely earth universe, it
is important not only for cosmology but also particle physics. In addition, some models
such as the quintessential inflation and the pre-big-bang model create the energy peak
of the GWB at ∼ 100 MHz. So far only a few experiments have been done and no tight
constraint on the GWB with a direct search exists at ultra-high frequencies.

To construct GW detectors and impose a tighter limit, we first investigated the
laser-interferometric detector designs that can effectively respond to GW at high fre-
quencies. Comparing the GW response functions of three detector design, we found
that the synchronous recycling interferometer (SRI) is the best at these sensitivities,
which has better sensitivity than an ordinary Fabry-Perot Michelson interferometer
(FPMI) by a factor of 3.3 at 100 MHz. Then, we considered the cross-correlation search
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with two SRIs. However, the conventional analytical method of cross correlation is not
applicable to our situation around 100 MHz, because the GW wavelength is comparable
to the detector size, and the usual assumption of long wavelength limit breaks down.
Thus, we generalized the formalism so as to be applied in any frequencies, and investi-
gated the location and orientation dependence of two SRIs. As a result, we found that
the sensitivity is nearly optimized and hardly changed if two coaligned detectors are
located in a range of ±0.2 m. For such a detector configuration, we derived the optimal
location of the two detectors, and showed that two SRIs with conservative parameters
can reach the sensitivity of h2

0Ωgw ≈ 1.4 × 1014 at 100 MHz. Finally, we described the
experiment done by our group with a pair of meter-sized laser-interferometric detec-
tors, and obtained the results of h2

0Ωgw < 6.0× 1025 as the first step of the experiment.
Though this is not stringent limit, we improved the previous constraint on the GWB
[45] by eight orders of magnitude.

In the calculation of the sensitivity of the SRI, we assumed the sensitivity is shot-
noise limited. But, the SRI has a fatal defect which amplifies not only the GW signal
but also the displacement noise of mirrors, and the displacement noise eventually limits
the sensitivity. For the solution, we proposed a so-called resonant speed meter (RSM),
which is a new detector design based on a ring-shaped cavity. The remarkable feature
of this interferometer is that, at certain frequencies, gravitational-wave signals are
amplified, while displacement noises are not. Therefore, the RSM has sharp sensitivity
to GWs at certain frequency. Next, we studied quantum noise of the RSM and found
that the RSM cannot overcome the standard quantum limit, but the sensitivity is
shot-noise limited at the resonant frequency since radiation pressure noise is canceled.
Thanks to the cancellation of the displacement noise, we showed that a relatively large-
scale detector, corresponding to lower resonant frequency, can achieve the sensitivity
that overcome the critical energy density of the universe and even the indirect bound
due to the big-bang nucleosynthesis.

8.2 Discussions and future prospects

As we mentioned in the summary above, the non-tensorial polarization can be detected
with interferometric GW detectors. However, we assumed that only one of the modes
is present. In general, the detector output one obtains is a mixture of the tensor,
vector, and scalar mode. So, we have to decompose the output signal by using at
least three independent signals, and calculate the SNR. It is expected to be possible
to decompose because there are several large-scale interferometric detectors on the
Earth. It is also interesting to decompose the tensor and scalar modes with a single
detector pair, under the assumption of the absence of the vector mode. If we assume
only two modes exist, our search method can also be applied to a space-based detector
pair. Further investigation on this issue is required. Furthermore, although we chiefly
focused on the experiment, it is also important to derive the prediction of a specific
theoretical model and to restrict the model parameters.

We investigated the GWB search at ultra-high frequencies ∼ 100 MHz, however,
unfortunately, the detector sensitivity with current technologies is not enough to con-
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strain the theoretical model and obtain interesting scientific results, since, at 100 MHz,
we cannot surpass even the critical energy density of the universe.

Note that the application of our studies in the thesis is not limited at ultra-high
frequencies. It can also be applied in the search at low frequencies, if the wavelength
of a GW is comparable with the detector size, e.g. LISA. In addition, our results
are not specific feature of the SRI, because the detector response functions of a SRI
in Eqs. (6.8) and a FPMI (6.9) are identical except for the prefactor (1 − e−2iΩτ ).
Hence, it is possible to perform the same experiment with two FPMIs. One of the
ways to reach interesting fields of scientific results is to slightly lower the observation
frequency, as seen in Fig. 7.8. As another direction of research, a RSM can be used as
a displacement noise-free interferometer [187]. Therefore, in the thesis, we provide the
general framework of a cosmological GWB search and the various detector topologies.





Appendix A

Bogolubov transformation and
particle creation

Particle creation in a dynamical gravitational field is described by Bogolubov transfor-
mation, which is related to smooth connection of mode functions between two phases
before and after the phase transition. For the details, see [67].

Suppose that phase I and phase II are the phase before and after a phase transition,
respectively. In each phase, a quantum field, for example, a quantized scalar field φ(x)
at a spacetime point can be expanded using complete sets of mode functions, {fk, f

∗
k}

in phase I and {Fk, F
∗
k} in phase II,

φ(x) =
∑
k

[
akfk + a†

kf
∗
k

]
,

=
∑
k

[
AkFk + A†

kF
∗
k

]
,

(A.1)

where {ak, a
†
k} and {Ak, A

†
k} are creation and annihilation operators in phase I and

phase II, respectively. Since {fk, f
∗
k} and {Fk, F

∗
k} are the complete sets, we can relate

one in terns of the others. In general, Bogolubov transformation is defined by

Fk =
∑
k′

(αkk′fk′ + βkk′f∗
k′) ,

fk =
∑
k′

(α∗
k′kFk′ − βk′kF

∗
k′) .

(A.2)

From Eqs. (A.1) and (A.2), the creation and annihilation operators between two phases
are related as

ak =
∑
k′

(αk′kAk′ + β∗
k′kA

†
k′) ,

Ak =
∑
k′

(α∗
kk′ak′ − β∗

kk′a
†
k′) ,

The vacuum states are defined using the annihilation operators by

ak|0〉I = 0 , Ak|0〉II = 0 .
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From the commutation relations of ak and Ak, the following relation between Bogol-
ubov coefficients can be found.∑

k

[
αk′kα

∗
k′′k − βk′kβ

∗
k′′k

]
= δk′k′′ , (A.3)∑

k

[
αk′kβk′′k − βk′kαk′′k

]
= 0 .

In the Friedmann-Robertson-Walker universe, according to isotropy and homogene-
ity, Bogolubov coefficients do not depend on a direction of k and a spatial coordinate
x. Thus, Bogolubov coefficients only depend on a frequency f , and can be written as

αkk′ = αfδkk′ ,

βkk′ = βfδkk′ .

Consequantly, Eq. (A.3) gives a relation,

|αk|2 − |βk|2 = 1 . (A.4)

Next, particle creation at the phase transition is considered. Particle number oper-
ator is defined, nf = a†

faf in the phase I and Nf = A†
fAf in the phase II. A quantum

state in the phase I is denoted |nf〉. The number of particles created at the phase
transition significantly depends on a time scale of the transition. If ∆T ≪ (2πf∗)

−1,
where ∆T is the time scale of the transition, and f∗ is the frequency of the mode of the
particle in which we are interested, the transition is instantaneous and the quantum
state does not change. In that case, the expected number of the particle in the phase
II is

Nf = 〈nf |A†
fAf |nf〉

= nf + 2|βf |2
(

nf +
1

2

)
. (A.5)

The second term in the right hand side of Eq. (A.5) show that pre-existing particles
before the phase transition are amplified and new particles are created. If the quantum
state is in a vacuum state in the phase I, Nf is simply

Nf = |βf |2 . (A.6)

In a converse situation that the transition occurs very slowly, ∆T ≫ (2πf∗)
−1, the

number of the particle is exponentially suppressed because the quantum state can
follow a change due to the transition [67]. Therefore, no particle is created.

In a cosmological context, ∆T corresponds to the Hubble time H−1. Hence, for
the superhorizon modes f∗ ≪ H−1, particles are created, for the subhorizon modes
f∗ ≪ H−1, no particle is created. The boundary frequency, f ∼ H−1 gives a cutoff
frequency of inflationary GWB spectrum.



Appendix B

Formulae of spherical Bessel
functions

• Explicit expressions of a spherical Bessel function

j0(α) =
sin α

α
,

j1(α) =
sin α

α2
− cos α

α
,

j2(α) = 3
sin α

α3
− 3

cos α

α2
− sin α

α
.

• Recurrence formula

jn+1(α) =
n + 1

α
jn(α) − jn−1(α)

• Integrated forms

∫ 1

−1

dx eiαx = 2j0(α)∫ 1

−1

dx eiαx(1 − x2) = 4
j1(α)

α∫ 1

−1

dx eiαx(1 − x2)2 = 16
j2(α)

α2∫ 1

−1

dx eiαxx2 =
2

3

[
j0(α) − 2j2(α)

]
∫ 1

−1

dx eiαxx4 =
2

35

[
7j0(α) − 20j2(α) + 8j4(α)

]
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• Expressions of jn(α)/αn with jn(x)

j1(α)

α
=

1

3

[
j0(α) + j2(α)

]
j2(α)

α2
=

1

105

[
7j0(α) + 10j2(α) + 3j4(α)

]



Appendix C

The calculation of the overlap
reduction function for non-tensorial
modes

We write down the equation obtained in the course of the calculation of the overlap
reduction functions for the vector and scalar modes. As for the procedure of the
calculation, see Sec. 5.2.1.

• Vector mode

q1 = 0 , q2 = 20j0(α) , q3 = 0 , q4 =
20

3

[
2j0(α) − j2(α)

]
,

q5 = 20

[
1

15
j0(α) − 1

21
j2(α) − 4

35
j4(α)

]
.


C1

C2

C3

C4

C5

 =
1

42


−28 −40 −12
42 30 −12
0 60 60
0 −45 60
0 0 −420


 j0

j2

j4

 .

• Scalar mode

q1 = 30

(
2 + κ

1 + 2κ

)
j0(α) , q2 = 60

(
1 + κ

1 + 2κ

)
j0(α) ,

q3 =
20

1 + 2κ

[
(2 + κ)j0(α) + 2(1 − κ)j2(α)

]
,

q4 =
40

1 + 2κ

[
(1 + κ)j0(α) + (1 − 2κ)j2(α)

]
,

q5 =
2

7

[
7(4 + 3κ)j0(α) + 20(2 − 3κ)j2(α) + 12(1 + κ)j4(α)

]
.
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C1

C2

C3

C4

C5

 =
1

7(1 + 2κ)


14(3 + κ) −20(3 − κ) 3(1 + 2κ)
7(1 + 2κ) 10(1 + 2κ) 3(1 + 2κ)

0 30(3 − κ) −15(1 + 2κ)
0 −15(1 + 2κ) −15(1 + 2κ)
0 0 105(1 + 2κ)


 j0

j2

j4

 .



Appendix D

GW polarizations in
higher-dimensional spacetime

In a 4-dimensional spacetime, there are two polarization modes of a GW: plus and cross
mode. In a higher-dimensional spacetime, more polarization modes appear, because of
extra degrees of freedom.

The number of the polarization mode in a D-dimensional spacetime can easily be
counted in the same way in Sec. 2.1. The perturbed metric tensor hµν has D(D + 1)/2
independent components. However, by D harmonic gauge conditions, the components
are reduced by D the number of independent components. In addition, another D
conditions are imposed to completely fix the gauge, which has residual degrees of
freedom under an infinitesimal gauge transformation. Then, D(D − 3)/2 polarization
modes exist in the D-dimensional spacetime. For instance, there are 5 polarizations in
a 5-dimensional spacetime, and 9 polarizations in a 6-dimensional spacetime.

In this Appendix below, for the simple examples, the GW polarization mode in a
higher-dimensional spacetime are provided.

D.1 Pure 5-dimensional Minkowski spacetime

We consider a 5-dimensional Minkowski spacetime without the compactification of
an extra dimension. In other words, four spatial dimensions are equivalent. Such a
spacetime is not realistic, but it is instructive to see how the polarization modes of a
GW appear.

To investigate the explicit components of the GW metric tensor, the requirement
for the coordinate system is to satisfy the harmonic gauge conditions and the gauge
conditions for an infinitesimal gauge transformation. Suppose the infinitesimal trans-
formation in Eq. (2.16), as

ξµ = i Cµeikαxα

, (D.1)

where Cµ is the constant of complex number. Substituting Eqs. (2.14) and (D.1) into
Eq. (2.17), on can obtain

A′
µν = Aµν + (Cµkν + Cνkµ) . (D.2)
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We can choose the wave-number vector of a GW as kα = (−ω, 0, 0, ω cos ζ, ω sin ζ),
without the loss of generality. The angle ζ is the angle between the z axis and the
propagation direction of the GW in 5-dimensional spacetime. For the choice of the
wave-number vector, the null condition kαkα = 0 holds. In addition, we choose the
coordinate so that A′

0µ = 0. So, from Eq. (D.2), the coefficients of the infinitesimal
transformation are given by

C0 =
A00

2ω
, C1 =

A01

ω
, C2 =

A02

ω
,

C3 =
A03

ω
+ C0 cos ζ, C4 =

A04

ω
+ C0 sin ζ . (D.3)

On the other hand, to satisfy the harmonic gauge conditions, the first condition of
Eq. (2.15),

kµA′
µν = 0 , (D.4)

is needed. Hereafter we do not fix the prime at the metric tensor, for simplicity. From
Eq. (D.4), one can obtain the relations

A13 = −A14 tan ζ ,

A23 = −A24 tan ζ ,

A33 = A44 tan2 ζ = −e34 . tan ζ . (D.5)

With the help of the traceless condition and Eq. (D.5), A33 is related to A11 and A22

as
A33 = −(A11 + A22) sin2 ζ . (D.6)

Therefore, the spatial coponents of Aµν can be written as

Aij =


A11 A12 A13 −A13 cot ζ
A12 A22 A23 −A23 cot ζ
A13 A23 −(A11 + A22) sin2 ζ (A11 + A22) sin ζ cos ζ

−A13 cot ζ −A23 cot ζ (A11 + A22) sin ζ cos ζ −(A11 + A22) cos2 ζ

 .

(D.7)

The Aij has five independent components, which is consistent with the number of the
independent polarization modes, mentioned at the beginning of this chapter. When
the GW is propagating in our 3-space (ζ = 0), the extra-dimensional components of
the Aij diverges, because we express the tensor components with A13 and A23. Note
that the Aij satisfies the transverse-traceless (TT) conditions, hµ

µ = 0 and kνAµν = 0.
It is intuitive to express the Aij in terms of the projected components on our 3-space,

which is defined in Eq. (5.30). Redefining

A11 = Ab + A+, A22 = Ab − A+,

A12 = A×, A13 = Ax, A23 = Ay ,

the components of Eq. (D.7) projected on our 3-space are

Ãij =

 Ab + A+ A× Ax

A× Ab − A+ Ay

Ax Ay −2Ab sin2 ζ

 .
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The spatial part of the metric tensor is given by

hij(ωt − k⃗ · x⃗) = A+eikαxα

ẽ+
ij + A×eikαxα

ẽ×ij + Axe
ikαxα

ẽx
ij + Aye

ikαxα

ẽy
ij

+Abe
ikαxα

ẽb
ij −

√
2 sin2 ζAbe

ikαxα

ẽℓ
ij .

Note that, in 5-dimensional Minkowski spacetime, there is a correlation between b and
ℓ modes, and exist five polarization modes (two tensor, two vector, one scalar modes).

D.2 Pure 6-dimensional Minkowski spacetime

The calculation of the GW polarization mode in a 6-dimensional Minkowski space-
time without compactification can be done in the same way as that in the case of
5-dimensional Minkowski spacetime, but it is complicated. Here we only show the
results.

The wave-number vector of a GW can be chosen as

kα = (−ω, 0, 0, ω cos ζ, ω sin ζ cos η, ω sin ζ sin η) ,

where η is another angle of the propagation direction of a GW. As a result, one obtain
the spatial components of Aµν ,

• independent components

A11, A12, A13, A14, A23, A24, A33, A44, A55,

• dependent components

A22 = −A11 − A33 − A44 − A55 ,

A15 = −A13 cotζ cscη − A14 cotη ,

A25 = −A23 cotζ cscη − A24 cotη ,

A34 = −[A33 cotζ secη + tan ζ(A44 cos η − A55 sin η tan η)) ]/2 ,

A35 = −[A33 cotζ cscη − tan ζ (A44 cos η cotη − A55 sin η)) ]/2 ,

A45 = [A33 cot2ζ cscη secη − A44 cotη − A55 tan η ]/2 .

Redefining

A11 = Ab + A+, A22 = Ab − A+, A33 = Aℓ

A12 = A×, A13 = Ax, A23 = Ay ,

the projected components on our 3-space are

Ãij =

 Ab + A+ A× Ax

A× Ab − A+ Ay

Ax Ay Aℓ

 .

The six components in our 3-space are all independent. Since there are 9 degrees of
freedom in a 6-dimensional Minkowski spacetime, other 3 degrees of freedom are hidden
in the extra dimensions.





Appendix E

GW response functions of
interferometers: general expressions

E.1 Synchronous-recycling interferometer

The configuration of SRI is shown in Fig. 6.1. We call the mirror A at X1 the recycling
mirror, the mirror B at X1 the transfer mirror and the mirrors at X2 and X3 the end
mirrors. The amplitude reflectivities and transmissivities of the transfer mirror and
the end mirrors at X2 and X3 are (RB, TB), (R2, T2), (R3, T3), respectively. Those of
the recycling mirror are (+RA, +TA) for the light incident from inside the cavity and
(−RA, +TA) for the light incident from outside the cavity. The angular frequency of
light is ω and the arm length is L. We define τ ≡ L/c. Electric fields at the recycling
mirror are defined in Fig. E.1 and are related by the following equations,

Cℓ = RADℓ + TAAℓ , (E.1)

Cr = RADr + TAAr ,

Bℓ = TADℓ − RAAℓ ,

Br = TADr − RAAr .

We assume that there is no displacement noise, for example, thermal noise, seismic
noise, radiation pressure noise etc., at 100 MHz. Then, D field after circulating the
cavity experiences the phase shift 4ωτ and the GW signal δφ(t),

Dℓ(t) = RcCℓ(t − 4τ) exp
[
i{4ωτ + δφℓ(t)}

]
,

Dr(t) = RcCr(t − 4τ) exp
[
i{4ωτ + δφr(t)}

]
, (E.2)

where we defined the composite reflectivity of mirrors Rc ≡ RBR2R3 and

δφℓ(t) ≡ δφ21(t) + δφ12(t − τ) + δφ31(t − 2τ) + δφ13(t − 3τ) , (E.3)

δφr(t) ≡ δφ31(t) + δφ13(t − τ) + δφ21(t − 2τ) + δφ12(t − 3τ) .

For example, δ̃φ21 denotes the phase shift due to GW when light travels from X2 to
X1 in Fig. 6.1. This can be calculated using Eq. (6.3).
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Figure E.1: Electric fields of SRI at the recycling mirror.

Equations (E.2) - (E.2) can be solved separately for right-handed and left-handed
fields. The input-output relation of the cavity for the left-handed fields becomes

Bℓ(t) = −RAAℓ(t) +
∞∑

k=1

T 2
ARk

cR
k−1
A Aℓ(t − 4kτ)e4iωτ exp

[
i

k∑
k′=1

δφℓ

[
t − 4(k′ − 1)τ

]]
.

We assume that the cavity is in resonance in the absence of GW, that is Aℓ(t) =
Aℓ(t − 4τ). Then,

Bℓ(t) = −RAAℓ(t)

{
1 −

∞∑
k=1

T 2
ARk

cR
k−2
A exp

[
i

k∑
k′=1

δφℓ

[
t − 4(k′ − 1)τ

]]}
.

Using the approximation that the GW signal is small (|δφ(t)| ≪ 1), we obtain

Bℓ(t) ≈ − RA − Rc

1 − RARc

Aℓ(t)

exp

[
−i

1 − RARc

RA − Rc

∞∑
k=1

T 2
ARk

cR
k−1
A

k∑
k′=1

δφℓ

[
t − 4(k′ − 1)τ

]]
. (E.4)

Therefore, the phase shift δΦℓ of left-handed light caused by GW is

δΦℓ(t) = −1 − RARc

RA − Rc

∞∑
k=1

T 2
ARk

cR
k−1
A

k∑
k′=1

δφℓ

[
t − 4(k′ − 1)τ

]
. (E.5)

Fourier transforming Eq. (E.5) and using Eqs. (E.3) and (6.5) give

δ̃Φℓ = α(Ω, Rc, RA)δ̃φℓ , (E.6)

δ̃φℓ =
ω

Ω
e−iΩ(τ+ez ·X1/c)

∑
A

eAh̃A

: [
n12 ⊗ n12

1 − (ez · n12)2
{ sin Ωτ − i(ez · n12)(e

−iΩτez ·n12 − cos Ωτ)}

+
n13 ⊗ n13

1 − (ez · n13)2
e−2iΩτ{ sin Ωτ − i(ez · n13)(e

−iΩτez ·n13 − cos Ωτ)} ] ,
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α(Ω, RA, Rc) ≡ − T 2
ARc

(RA − Rc)(1 − RARc e−4iΩτ )
.

The GW signal for the right-handed light can be obtained by simply changing the
subscripts 2 ↔ 3 because of the symmetry of the system. Therefore, the output of the
detector is

δ̃Φall ≡ δ̃Φr − δ̃Φℓ

= α(Ω, RA, Rc)δ̃φall

δ̃φall = (1 − e−2iΩτ )
ω

Ω
e−iΩ(τ+ez ·X1/c)

∑
A

eAh̃A

: [ (n13 ⊗ n13) HSRI(Ω, ez · n13) − (n12 ⊗ n12) HSRI(Ω, ez · n12)} ] .

(E.7)

with

HSRI(Ω, ez · n12) ≡
1

1 − (ez · n12)2

[
sin Ωτ − i(ez · n12)(e

−iΩτez ·n12 − cos Ωτ)
]

.

E.2 Fabry-Perot Michelson interferometer

The configuration of FPMI is shown in Fig. 6.2. The amplitude reflectivities and trans-
missivities of end mirrors at XE1 and XE2 are (RE, TE), and of front mirrors at XF1

and XF2 are (+RF , +TF ) for the light incident from inside the cavities and (−RF , +TF )
for the light incident from outside the cavities. The arm length is L. Electric fields at
the front mirror are defined in Fig. E.2. First, we will consider only one FP cavity and
calculate the input-output relation. At the end of our calculation, we will derive the
full output of FPMI.

The fields are related by the following equations,

Eout = −RF Ein + TF EB , (E.8)

EA = RF EB + TF Ein . (E.9)

Figure E.2: Electric fields of FPMI.

EA is reflected at the end mirror and returns to the front mirror after experiencing
the phase shift 2τ and the modulation due to GW. The relation between EA and EB
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is

EB(t) = REEA(t − 2τ) exp
[
i{2ωτ + δφcav(t)}

]
, (E.10)

δφcav(t) ≡ δφEF (t) + δφFE(t − τ) , (E.11)

where δφEF denotes the phase shift due to GW when light propagates from the end
mirror to the front mirror and the specific form is given by Eq. (6.3). Similarly, δφFE

is the one from the front mirror to the end mirror. From Eqs. (E.8) - (E.10), the
input-output relation for the FP cavity becomes

Eout(t) = −RF Ein(t)

+RET 2
F

∞∑
k=1

(RF RE)k−1Ein(t) exp

[
i

k∑
k′=1

δφcav

[
t − 2(k′ − 1)τ

]]

≈ − RF − RE

1 − RF RE

Ein(t)

× exp

[
−i

RET 2
F (1 − RF RE)

RF − RE

∞∑
k=1

(RF RE)k−1

k∑
k′=1

δφcav

[
t − 2(k′ − 1)τ

]]
,

where we used the approximation |δφcav(t)| ≪ 1. Therefore, the phase shift δΦ caused
by GW is

δΦ(t) = −RET 2
F (1 − RF RE)

RF − RE

∞∑
k=1

(RF RE)k−1

k∑
k′=1

δφcav

[
t − 2(k′ − 1)τ

]
. (E.12)

Fourier transforming Eq. (E.12) and using Eqs. (E.11) and (6.5) gives

Φ̃(Ω) = α(Ω, RF , RE) ˜δφcav(Ω) ,

δ̃φcav =
ω

Ω

∑
A

eAh̃A e−iΩ(τ+ez ·XF /c) n ⊗ n

1 − (ez · n)2

× [ sin Ωτ − i(ez · n)(e−iΩτez ·n − cos Ωτ) ] ,

α(Ω, RF , RE) ≡ − RET 2
F

(RF − RE)(1 − RF RE e−2iΩτ )
,

where n ≡ (XE − XF )/L. This formula is consistent with the previous result, Eq.(6)
in [188], except for an overall constant factor.

Using the result obtained above, we can easily obtain the full-output signal for the
FPMI. We fix the subscripts 1 and 2 to distinguish north and east arms in Fig. 6.2,
and define ni ≡ (XEi −XFi)/L, i = 1, 2. For simplicity, we assume that the two front
mirrors on both arms are located at the same place, that is, XF = XF1 = XF2. This
assumption is valid because it hardly affects the GW signal. Then, total output of
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FPMI is

δ̃Φall ≡ δ̃Φ1 − δ̃Φ2

= α(Ω, RF , RE)δ̃φall

δ̃φall =
ω

Ω
e−iΩ(τ+ez ·XF /c)

∑
A

eAh̃A

: [(n1 ⊗ n1) HFPM(Ω, ez · n1) − (n2 ⊗ n2) HFPM(Ω, ez · n2)] .

(E.13)

with

HFPM(Ω, ez · n1) ≡ 1

1 − (ez · n1)2

[
sin Ωτ − i(ez · n1)(e

−iΩτez ·n1 − cos Ωτ)
]

,

= HSRI(Ω, ez · n1) .

E.3 L-shaped cavity Michelson interferometer

The configuration of LMI is shown in Fig. 6.3. The amplitude reflectivities and trans-
missivities of end mirrors at XE1 and XE2 are (RE, TE), and of front mirrors at XF1

and XF2 are (+RF , +TF ) for the light incident from inside the cavities and (−RF , +TF )
for the light incident from outside the cavities. The two mirrors at XC1 and XC2 are
completely reflective. The arm length is L. Electric fields at the front mirror are de-
fined in Fig. E.3. First, we will consider only one L-shaped cavity and calculate the
input-output relation. At the end of our calculation, we will derive the full output of
LMI.

The relation between the fields is the same as Eqs. (E.8) and (E.9) for FPMI. The
relation between EB and EA is almost the same as FPMI. However, only differences
are that the round-trip time of LMI in the cavity is 4τ and that light is reflected by

Figure E.3: Electric fields of LMI.
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the mirror at Xc during the trip. Thus, it is given by

EB(t) = REEA(t − 4τ) exp
[
i{4ωτ + δφcav(t)}

]
, (E.14)

δφcav(t) ≡ δφCF (t) + δφEC(t − τ) + δφCE(t − 2τ) + δφFC(t − 3τ) , (E.15)

where δφIJ , I, J = F,E,C denotes the phase shift due to GW when the light propa-
gates from the I-th mirror to the J-th mirror. From Eqs. (E.8), (E.9) and (E.14), the
input-output relation for the L-shaped cavity becomes

Eout(t) = −RF Ein(t)

+RET 2
F

∞∑
k=1

(RF RE)k−1Ein(t) exp

[
i

k∑
k′=1

δφcav

[
t − 4(k′ − 1)τ

]]

≈ − RF − RE

1 − RF RE

Ein(t)

× exp

[
−i

RET 2
F (1 − RF RE)

RF − RE

∞∑
k=1

(RF RE)k−1

k∑
k′=1

δφcav

[
t − 4(k′ − 1)τ

]]
,

where we used the approximation |δφcav(t)| ≪ 1. Therefore, the phase shift δΦ caused
by GW is

δΦ(t) = −RET 2
F (1 − RF RE)

RF − RE

∞∑
k=1

(RF RE)k−1

k∑
k′=1

δφcav

[
t − 4(k′ − 1)τ

]
, (E.16)

Fourier transforming Eq. (E.16) and using Eqs. (E.15) and (6.5) gives

δ̃Φ(Ω) = α(Ω, RF , RE) ˜δφcav(Ω) ,

δ̃φcav =
ω

Ω

∑
A

eAh̃A e−iΩ(2τ+ez ·XC/c)

× [
nCE ⊗ nCE

1 − (ez · nCE)2

{
sin Ωτ − i(ez · nCE)(e−iΩτez ·nCE − cos Ωτ)

}
− nCF ⊗ nCF

1 − (ez · nCF )2
{ sin Ωτ(1 − 2e−iΩτez ·nCF cos Ωτ)

+i(ez · nCF )(e−iΩτez ·nCF cos 2Ωτ − cos Ωτ) } ] ,

α(Ω, RF , RE) ≡ − RET 2
F

(RF − RE)(1 − RF RE e−4iΩτ )
,

where nCE ≡ (XE − XC)/L、nCF ≡ (XF − XC)/L.

Using the result obtained above, we can easily obtain the full-output signal for the
LMI. We fix the subscripts 1 and 2 in order to distinguish the two arms in Fig. 6.3, and
define n1 ≡ nC2E = −nC1F and n2 ≡ −nC2F = nC1E. For simplicity, we assume that
the two front mirrors and the two end mirrors on both arms are located at the same
place, that is, XF = XF1 = XF2 and XE = XE1 = XE2, respectively. This assumption
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is valid because it hardly affects the GW signal. Then, total output of LMI is

δ̃Φall ≡ δ̃Φ1 − δ̃Φ2

= α(Ω, RF , RE)δ̃φall (E.17)

δ̃φall =
ω

Ω
e−iΩ(2τ+ez ·XF /c)

∑
A

eAh̃A

: [ (n2 ⊗ n2) HLMI(Ω, ez · n2) − (n1 ⊗ n1) HLMI(Ω, ez · n1) ] ,

(E.18)

with

HLMI(Ω, ez · n1) ≡ 1

1 − (ez · n1)2
[ sin Ωτ (e−ip1 + e−ip2 − 2 cos Ωτ)

−i(ez · n1)(e
−i(p1+p2) + cos 2Ωτ − (e−ip1 + e−ip2) cos Ωτ) ] ,

where we defined p1 ≡ Ωτ(ez · n1) and p2 ≡ Ωτ(ez · n2).





Appendix F

Quantum theory in a laser
interferometer

Full-quantum treatment of quantum noise has been formulated by Kimble et al. (here-
after ”KLMTV”) [185]. Recent calculations of quantum noise in a laser interferometer
for GWs are based on the formalism. In this Appendix, we will review it briefly.

F.1 Quantum formalism

In the Heisenberg picture, a quantized electromagnetic field with positive frequencies
can be written as 1

E(+) =

∫ ∞

0

√
2π~ω

A c
aωe−iωt dω

2π
. (F.1)

Here A is the effective cross-section area of a beam, and aω is the annihilation operator
with a frequency ω, which holds the commutation relations:

[aω, aω′ ] = 0 , [aω, a†
ω′ ] = 2πδ(ω − ω′) . (F.2)

We split the field into side bands about the carrier frequency ω0: ω = ω0 ± Ω, and
define

a+ ≡ aω0+Ω , a− ≡ aω0−Ω .

The commutation relation (F.2) implies

[a+, a†
+′ ] = 2πδ(Ω − Ω′) , [a−, a†

−′ ] = 2πδ(Ω − Ω′) ,

and Eq. (F.1) becomes

E(+) =

√
2π~ω0

A c
e−iω0t

∫ ∞

0

(
a+e−iΩt + a−e+iΩt

) dΩ

2π
.

1We use ω for the angular frequency of an electromagnetic field and ω0 for the angular frequency
of laser light, only in this chapter of Appendices.
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Here we used the approximation ω0 ± Ω ≈ ω0 in the square root, since, in general,
ω0 ≈ 1.8 × 1015 rad sec−1 and Ω ≤ 109 rad sec−1. We also formally extend the integrals
over Ω to infinity, for ease of notation.

Next, we introduce two-photon mode formalism [189, 190], where the upper and
lower sidebands a± are treated together. The two-photon mode formalism is adequate
for an interferometric GW detector, because mirror motions due to GWs and external
disturbances simultaneously create both sidebands. Defining field-amplitude operators
for quadrature mode 2

a1 ≡
a+ + a†

−√
2

, a2 ≡
a+ − a†

−√
2i

, (F.3)

and using E = E(+) + E(−) together wtih E(−) = [E(+)]†, one can write the electro-
magnetic field into the following form,

E =

√
4π~ω0

A c

[
cos(ω0t)

∫ ∞

0

(
a1e

−iΩt + a†
1e

iΩt
) dΩ

2π

+ sin(ω0t)

∫ ∞

0

(
a2e

−iΩt + a†
2e

iΩt
) dΩ

2π

]
. (F.4)

The new operators a1 and a2 satisfy the commutation relations:

[a1, a
†
2′ ] = −[a2, a

†
1′ ] = 2πiδ(Ω − Ω′) ,

[a1, a1′ ] = [a1, a
†
1′ ] = [a†

1, a
†
1′ ] = [a1, a2′ ] = [a†

1, a
†
2′ ] = 0 .

F.2 Conventional Fabry-Perot Michelson interfer-

ometer

Hereafter we consider the case of Fabry-Perot Michelson interferometer (FPMI) [185].
However, the qualitative descriptions also hold for any other laser interferometers. In
the FPMI, quantum noise is caused by a vacuum field a entering an interferometer from
the dark port 3 [182, 183], as shown in Fig. F.1. The a field is shot noise itself and also
produces radiation-pressure noise, coupled with the carrier light in the Fabry-Perot
(FP) cavity. b is the output field, which includes shot noise, radiation-pressure noise
and GW signal.

2Strictly speaking, the field amplitudes for quadrature modes are defined by

a1 ≡
√

ω0 + Ω
2ω0

a+ +
√

ω0 − Ω
2ω0

a†
−, a2 ≡ −i

√
ω0 + Ω

2ω0
a+ + i

√
ω0 − Ω

2ω0
a†
−

However, in our case, since ω0 ≫ Ω, they are approximated to Eq. (F.3)
3In practice, losses of optics allow vacuum fluctuation to come into the interferometer through not

only the dark port but also other paths, for example, end mirrors with finite transmissivity and loss,
or light scattering at mirrors and a beam splitter.
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Figure F.1: Input field a and output field b in a Fabry-Perot Michelson interferometer.

What we need to calculate the power spectrum of quantum noise is the relation
between the input and output fields. The input field is given by Eq. (F.4) and the
output field is written as

Eout =

√
4π~ω0

A c

[
cos(ω0t)

∫ ∞

0

(
b1e

−iΩt + b†1e
iΩt

) dΩ

2π

+ sin(ω0t)

∫ ∞

0

(
b2e

−iΩt + b†2e
iΩt

) dΩ

2π

]
.

Then, after long but straightforward calculation, one can obtain the input-output re-
lation [185]:

b1 = a1e
2iβ

b2 = a2e
2iβ − Ka1e

2iβ +
√

2K

(
h

hSQL

)
eiβ . (F.5)

where various quantities are defined as below.

γ =
T 2c

4L
,

β = arctan(Ω/γ) ,

ISQL =
mL2γ4

4ω0

, (F.6)

K =
2(I0/ISQL)

(Ω/γ)2[1 + (Ω/γ)2]
,

hSQL =

√
8~

mΩ2L2
.
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In the calculation, it is assumed that all optics have no losses and that the end mirrors
are completely reflective. T is the amplitude transmissivity of FP cavity’s front mirror
4. γ is FP-cavities’ half bandwidth, which determines the characteristic frequency of
the FP cavity, and β is the effective phase shift of a sideband field in the FP cavity. K
is a coupling constant between a carrier field and a sideband field, which determines
the intensity of radiation-pressure. hSQL is the square root of the SQL spectral density
and ISQL is the laser power required to reach SQL at Ω = γ. In Eq. (F.5), the first
term is shot noise, the second term is radiation-pressure noise, and the third term is
the GW signal.

Converting the noise signal to GW amplitude, hn is defined as

hn(Ω) =
hSQL√

2K
(a2 − Ka1)e

iβ . (F.7)

Then, spectral density is defined as the variance of the reduced noise amplitude by

1

2
2πδ(Ω − Ω′)Sh(Ω) ≡ 〈in|hn(Ω)h†

n(Ω′)|in〉sym ,

where subscript ”sym” means calculating by replacing hn(Ω)h†
n(Ω′) with

1

2

(
hn(Ω)h†

n(Ω′) + h†
n(Ω′)hn(Ω)

)
,

and |in〉 is an input state. In our configuration, input state at the dark port is in its
vacuum state, defined using annihilation operators for each sideband by

a+|0a〉 = a−|0a〉 = 0 .

Using the relation

〈0a|aj(Ω)a†
k(Ω

′)|0a〉sym =
1

2
2πδ(Ω − Ω′)δjk ,

we can obtain the spectral density of quantum noise in the FPMI,

Sh =
h2

SQL

2

(
1

K
+ K

)
. (F.8)

This spectral density reaches the minimum noise level, the so-called standard quantum
limit (SQL), at Ω = γ when the laser power I0 is ISQL. This indicates that there exists
optimal laser power in order to minimize the noise at a certain frequency, since the
shot noise and radiation pressure noise are proportional and inversely proportional to
the laser power, respectively. Therefore, in this configuration of the FPMI, one cannot
overcome the SQL, because shot noise and radiation pressure noise have no dynamical
correlation.

4This is different from the definition in KLMTV’s paper.
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F.3 Optional quantum configurations

Although one cannot overcome the SQL in the conventional configuration of the FPMI,
but, quantum mechanically, the SQL can be circumvented. Several methods to over-
come the SQL with quantum correlations have been proposed.

Squeezed input

If a squeezed vacuum field is injected from the dark port, instead of the coherent
vacuum field, shot noise level can be reduced. The original idea is proposed by Unruh
[191] in the early 1980s. In the case of a coherent vacuum input, the quadrature modes
a1 and a2 in Eq. (F.5) have the same amplitude. If the vacuum state is squeezed, one
of the quadrature amplitude is reduced, while the other amplitude orthogonal to it
become worse. In other words, one can perform more accurate phase measurement of
a beam with shot noise less than that of the coherent vacuum, if the detection phase
is properly selected. This technique is completely based on quantum correlations.

The squeezing of light was first confirmed experimentally by Slusher et al. in 1985.
Soon after the first detection, it was demonstrated that the shot-noise level is improved
below that of zero-point fluctuations by using the squeezed vacuum incident into the
interferometer [192]. Then, the experimental demonstrations toward the installation
of the squeezing into a large-scale interferometer has been reported by many authors
[193, 194, 195, 196, 197, 198].

Variational output

Vyatchanin and Matsko [199, 200, 201] invented this design conceptually in the early
1990s. The detector input is the same as that in a conventional one, but the output
is modified. This method takes advantage of the fact that the output field is pondero-
motively squeezed due to the mirror motion induced by radiation pressure, which was
first recognized by Braginsky and Manukin [202]. Thus, if the phase of the homodyne
detection is properly selected, the quantum noise can be reduced and circumvents the
SQL without modifying the input of the interferometer.

Signal recycling

This method uses one extra mirror, called a signal recycling (SR) mirror 5. This addi-
tional mirror can reshape the noise curve and make two dips on it [203, 204]. Recently,
quantum noise has been calculated in the case of Advanced-LIGO, in which SR mirror
is put at the dark port of the interferometer [205, 206]. The SR mirror creates dynam-
ical correlations between shot noise and radiation-pressure noise, and makes it possible
to circumvent the SQL. The signal recycling is planned to apply to the next-generation
interferometers such as Advanced LIGO [33], Advanced VIRGO [34], LCGT [36], and

5The interferometer configuration is called signal recycling, detuned signal recycling or resonant
sideband extraction, depending on the microscopic position of the extra mirror at the dark port. Here
we call all of them signal recycling.
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AIGO [35]. This method has been extended in another detector configuration [207], a
so-called differential-type FPMI, which detects signals for each arm independently and
combines (differentiates) them after the detection. In the configuration with two SR
mirrors, three dips appear on the noise curve.
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