Minoda, T., Yoshiura, S., and Takahashi, T., "Impact of the primordial fluctuation power spectrum on the reionization history", Physical Review D, vol. 108, no. 12, APS, 2023.

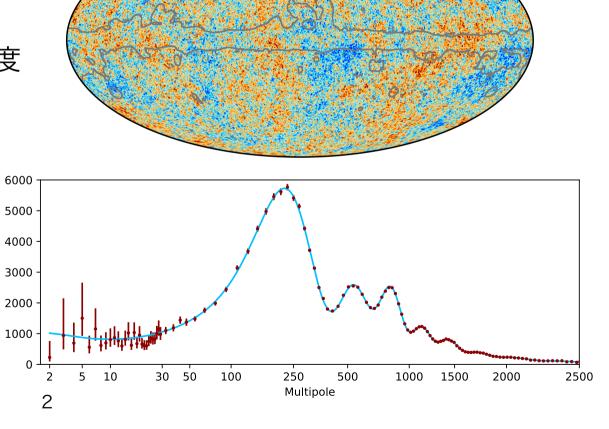
# 原始曲率揺らぎが 宇宙電離に与える影響

日本天文学会2024年春季年会

2024年3月13日

箕田鉄兵 (Tsinghua University 清華大学),

<u>吉浦伸太郎(国立天文台)高橋智(佐賀大)</u>


### 原始曲率揺らぎ

CMBの温度揺らぎの観測など > 原始曲率揺らぎの存在が示唆

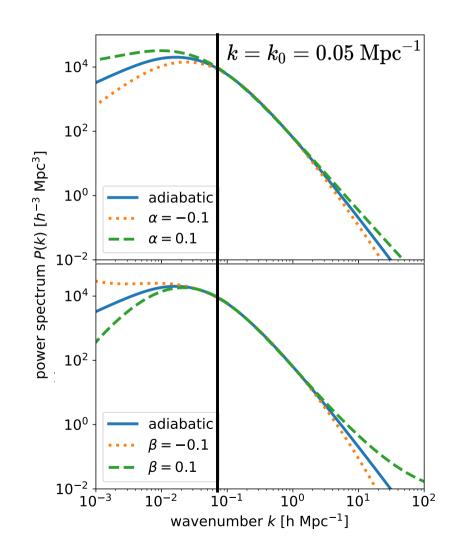
断熱揺らぎ(波数の単一べき)で精度 よく説明

原始曲率揺らぎの性質の詳細な観測

> 初期宇宙のゆらぎ生成機構 (インフレーションモデル)の解明 🖫



### 原始曲率揺らぎの定式化


さまざまなインフレーションモデル > 原始揺らぎに特徴的なふるまい

等曲率揺らぎ、テンソルモードのスペクトル

インフラトンのポテンシャル、スローロールパラメータ

#### <u>本研究ではランニングスペクトルを議論</u>

$$\mathcal{P}(k) = A_s igg(rac{k}{k_0}igg)^{n_s-1+rac{1}{2}oldsymbol{lpha_s}\ln\left(rac{k}{k_0}
ight)+rac{1}{6}oldsymbol{eta_s}\left[\ln\left(rac{k}{k_0}
ight)
ight]^2}{3}$$



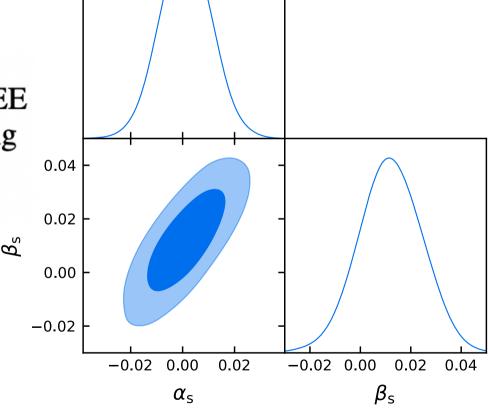
### ランニングパラメータの制限

$$\mathcal{P}(k) = A_s igg(rac{k}{k_0}igg)^{n_s-1+rac{1}{2}lpha_s\ln\left(rac{k}{k_0}
ight)+rac{1}{6}eta_s\left[\ln\left(rac{k}{k_0}
ight)
ight]^2}$$

$$\beta_s = 0.009 \pm 0.012,$$

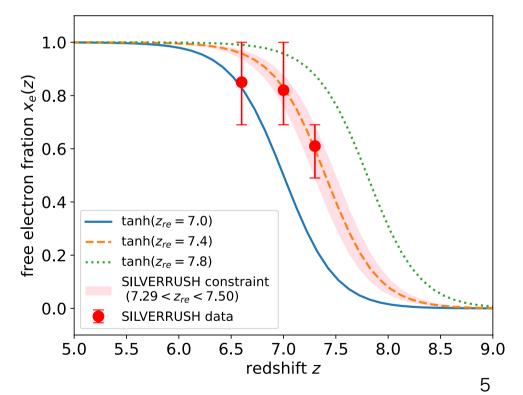
$$\alpha_s = 0.0011 \pm 0.0099,$$

$$n_{\rm s} = 0.9647 \pm 0.0043$$
,


68 %, TT,TE,EE +lowE+lensing +BAO.

#### Planck 2018の結論:

単一冪乗で無矛盾である


 $0.008~\mathrm{Mpc^{-1}} \lesssim k \lesssim 0.1~\mathrm{Mpc^{-1}}$ 

より小さいスケールではどうか?



## 原始揺らぎの新たなプローブ: 再電離史

$$x_{
m e}(z,z_{
m re}) = rac{1}{2} iggl[ 1 + anh \left( rac{y(z_{
m re}) - y(z)}{\Delta y} 
ight) iggr],$$



$$egin{aligned} y(z) &= (1+z)^{2/3}, \ \Delta y &= 3/2(1+z_{
m re})^{1/2}\Delta z \ \Delta z &= 0.5 \end{aligned}$$

#### THE ASTROPHYSICAL JOURNAL

#### **OPEN ACCESS**

SILVERRUSH. XI. Constraints on the Ly $\alpha$  Luminosity Function and Cosmic Reionization at z=7.3 with Subaru/Hyper Suprime-Cam

Hinako Goto<sup>1</sup>, Kazuhiro Shimasaku<sup>1,2</sup>, Satoshi Yamanaka<sup>3,4</sup>, Rieko Momose<sup>1</sup>, Makoto Ando<sup>1</sup>, Yuichi Harikane<sup>5,6</sup>, Takuya Hashimoto<sup>7</sup>, Akio K. Inoue<sup>4,8</sup>, and Masami Ouchi<sup>5,9,10</sup>

Published 2021 December 24  $\cdot$  @ 2021. The Author(s). Published by the American Astronomical Society.

The Astrophysical Journal, Volume 923, Number 2

Citation Hinako Goto et al 2021 ApJ 923 229

DOI 10.3847/1538-4357/ac308b

### 再電離史の理論計算

A. Mesinger, S. Furlanetto, & R. Cen (2011), MNRAS, 411, 955

準数値計算コード"21cmFAST"を拡張する

再電離史を決定する重要な量:

星形成率

(1) UV光度関数

$$\phi(M_{
m UV}) = \left(f_{
m duty}rac{dn}{dM_{
m h}}
ight) \left|rac{dM_{
m h}}{dM_{
m UV}}
ight|$$

ハローの形成史 初期条件(曲率揺らぎ) 宇宙論パラメータ Duty cycle is parametrized by M<sub>turn</sub>:

$$f_{
m duty} \, = \exp\!\left(-rac{M_{
m turn}}{M_{
m h}}
ight)$$

### 再電離史の理論計算

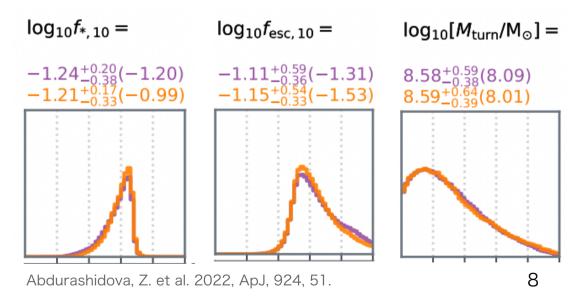
(2) 星形成率

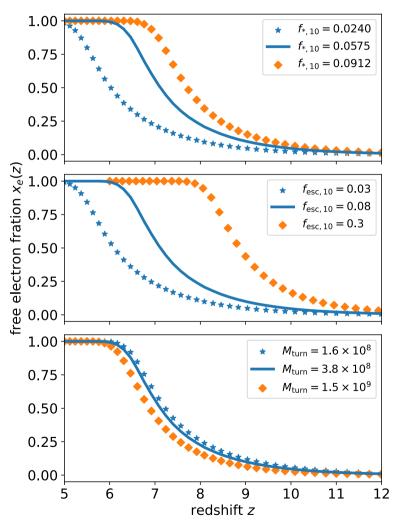
$$\dot{M}_*(M_{
m h},z) = rac{M_*}{t_* H(z)^{-1}}$$

 $t_\star$ :ハッブル時間に対する 星形成の典型的な時間

(3) 星質量-八口一質量関係

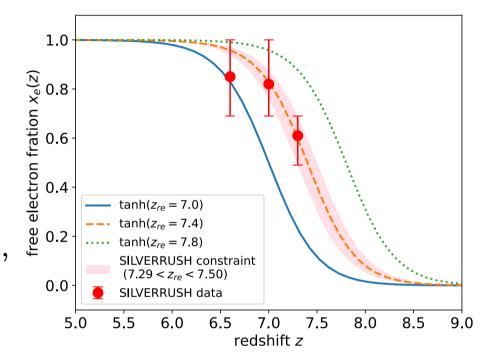
$$rac{M_*}{M_{
m h}} = f_{*,10} igg(rac{M_{
m h}}{10^{10} M_{\odot}}igg)^{lpha_*} igg(rac{\Omega_{
m b}}{\Omega_{
m m}}igg)$$


(4) 電離光子脱出率


$$f_{
m esc}(M_{
m halo})=f_{
m esc,10}igg(rac{M_{
m halo}}{10^{10}M_{\odot}}igg)$$
 、特に影響の大きいパラメータ: $M_{
m turn},f_{
m esc,10},f_{*,10}$ 

### 21cmFASTを用いた電離史の計算

先行研究で与えられた天体物理パラメータへの制限をpriorの範囲として計算を行った。


HERA 21cm PS + galaxy UV LFs + QSO dark fraction + CMB optical depth





### 21cmFASTのフィッティング関数

$$x_{
m e}(z=7.3)={
m min}(1.0, ilde{x}_{
m e,7.3}),$$
  $x_{
m e,7.3}=\left\{0.421{
m e}^A+B\left[\left(rac{f_{*,10}}{0.058}
ight)^C-1.0
ight]$   $+D\log\left(rac{M_{
m turn}}{3.8 imes10^8M_\odot}
ight)
ight\}\left(rac{f_{
m esc,10}}{0.078}
ight)^E$   $\frac{1.0}{9}$  0.2  $\frac{{
m tanh}(z_{
m re})}{0.078}$   $A=8.43lpha_s+11.41eta_s,$   $B=4.00lpha_s+7.75eta_s+0.38,$   $C=-5.24lpha_s-12.04eta_s+1.34,$  Fitting errorの平均は  $D=-0.7lpha_s-1.20eta_s-0.07,$  SILVERRUSHの観測: $D=-0.7lpha_s-1.20eta_s-0.07,$  SILVERRUSHの観測: $D=-3.11eta_s+1.08.$ 



Fitting errorの平均は ~0.02

SILVERRUSHの観測エラーは~0.2

$$0.49 \le x_{\rm e} \le 0.69$$
 at  $z = 7.3$ .

$$7.29 \le z_{\rm re} \le 7.50$$

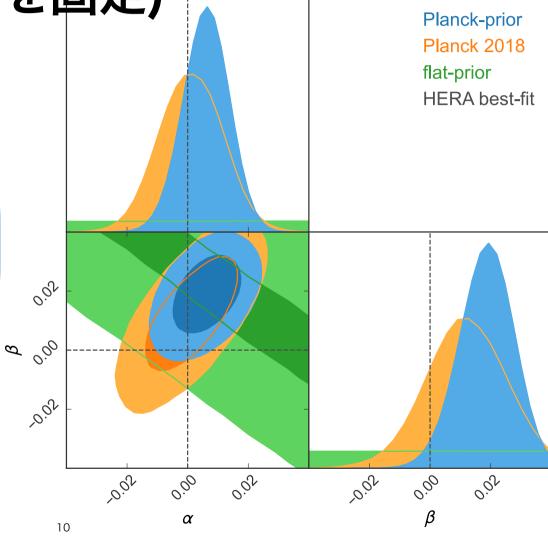
MCMC解析 (astroを固定)

#### Flat prior:

-0.2 < alpha < 0.2

-0.2 < beta < 0.2

#### Planck prior:


2D gaussian on alpha and beta, with Planck 2018 covariance matrix

Planck 2018 
$$\alpha_s = 0.0011 \pm 0.0099,$$
  $\beta_s = 0.009 \pm 0.012,$ 

Our results

$$lpha_s = 0.006^{+0.007}_{-0.007}$$

$$lpha_s = 0.006^{+0.007}_{-0.007} \ eta_s = 0.019^{+0.008}_{-0.009}$$

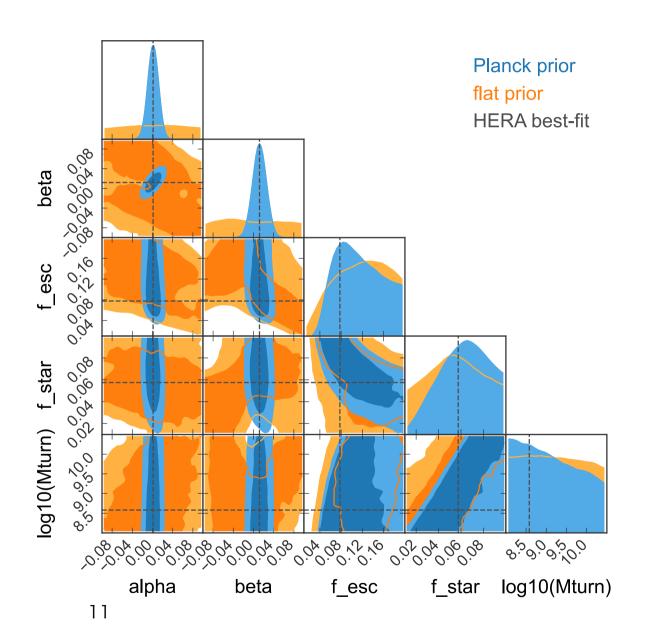


### MCMC解析

#### Flat prior:

-0.2 < alpha < 0.2

-0.2 < beta < 0.2


0.001 < fesc < 0.4

0.001 < fstar < 0.4

7.0 < log M < 10.5

Planck prior:

2D gaussian on alpha and beta



#### MCMC解析

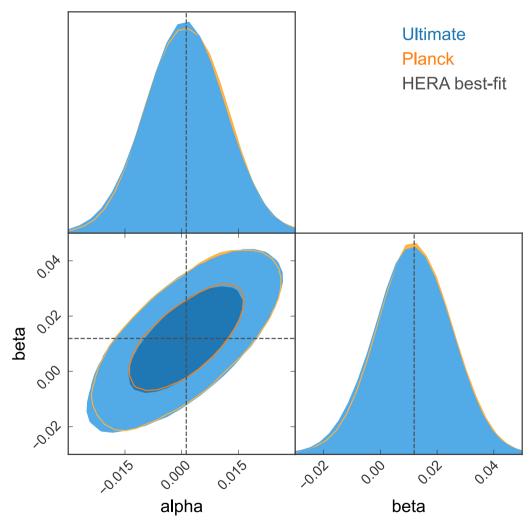
Flat prior:

-0.2 < alpha < 0.2

-0.2 < beta < 0.2

0.001 < fesc < 0.4

0.001 < fstar < 0.4


7.0 < log M < 10.5

Planck prior:

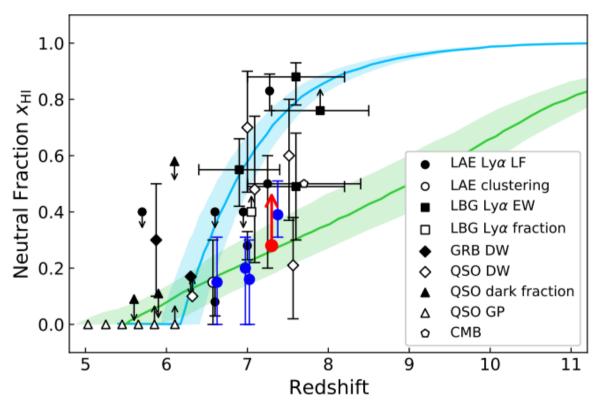
2D gaussian on alpha and beta

Planck 単独の制限とほとんど変わらず。

astroの制限/将来観測では有用かも?

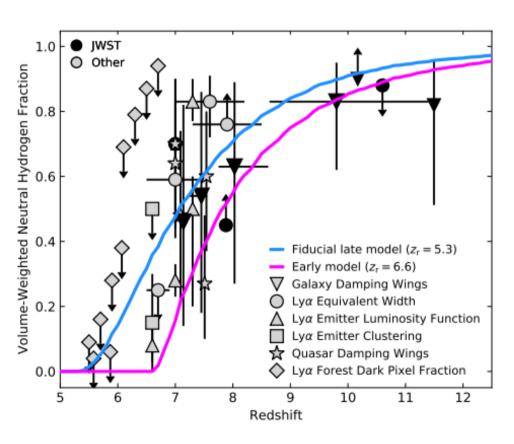


#### **Future** issues


・JWSTなどの高赤方偏移銀河やAGNの観測で再電離・宇宙の夜明けが明らかになりつつある > JWST, SKAの観測などによるデータのアップデート

・その他の宇宙論パラメータ、天体物理パラメータ (f\_star, f\_escの指数など) との縮退

・Global signalを用いた制限との比較 (escape fractionよりもX線加熱に sensitive, c.f. Minoda+ (2022) PRD, vol. 105, no. 8, arXiv:2112.15135)


H. Goto, et al., (2021) Astrophysical Journal, vol. 923, no. 2

L. C. Keating, J. S. Bolton, F. Cullen, M. G. Haehnelt, E. Puchwein, and G. Kulkarni, (2023) arXiv.2308.05800.



SILVERRUSHのLya LFの観測を用いた 水素中性率の制限

#### JWSTのdamping wingの観測を 用いた水素中性率の制限

