A constraint on primordial magnetic fields from 21-cm line observation

Teppei Minoda (Nagoya U.)

with Hiroyuki Tashiro and Tomo Takahashi, submitted to MNRAS Letters (arXiv:1812.00730)

1. Introduction

- Primordial Magnetic Fields (PMFs)
- 21-cm global signal
- IGM thermal history in Dark Age

2. Theory and Methods

- Statistical property of PMFs
- MHD dissipation and heating IGM

3

- IGM thermal history with PMFs
- A constraint on the PMFs

1. Introduction

- Primordial Magnetic Fields (PMFs)
- 21-cm global signal
- IGM thermal history in Dark Age

2. Theory and Methods ♦ Statistical property of PMFs ♦ MHD dissipation and heating IGM

- IGM thermal history with PMFs
- A constraint on the PMFs

Primordial Magnetic Fields

Various structures in the universe is magnetized.

- ✓ Galaxies ~ 1-100 μ G ✓ Galaxy Clusters ~ 0.1-10 μ G
- ✓ Voids (Intergalactic region) ~ $10^{-15} - 10^{-20}$ G

Recently, existence of magnetic fields in low-density region is suggested by gamma-ray from TeV blazars (Ando & Kusenko 2010; Neronov & Vovk 2010)

UPUTHING

M51 galaxy [visible & radio] VLA/Effelsberg 20cm, HST (Fletcher+, 2011, MNRAS, 412)

Coma cluster [radio] WSRT, 90cm (Giovannini+, 1993, ApJ, 406)

These large-scale magnetic fields can be generated in the early universe.

(inflation, phase transition, topological defects, Harrison mechanism, ...)

= Primordial Magnetic Fields (PMFs)

(Kandus+ 2011; Subramanian 2016)

What is 21-cm line?

A radio wave due to hyperfine structure of neutral hydrogen HI

21-cm line global signal

Redshift dependence of 21-cm global signal (sky averaged signal)

Roughly speaking, T_{spin} is coupled with either T_{K} or T_{CMB}

IGM thermal history (without PMFs)

Adiabatic thermal history predict absorption ($T_{CMB} > T_K$) at $z \sim 17$

IGM thermal history (without PMFs)

Adiabatic thermal history predict absorption ($T_{CMB} > T_K$) at $z \sim 17$

1. Introduction

- Primordial Magnetic Fields (PMFs)
- 21-cm global signal
- IGM thermal history in Dark Age

2. Theory and Methods

- Statistical property of PMFs
- MHD dissipation and heating IGM

- IGM thermal history with PMFs
- A constraint on the PMFs

stochastic PMF formalism

Assuming scale-dependent magnetic field strength

scale dependence

$$B_{\lambda} = 0$$

$$B_{\lambda} = B_{1 \text{ Mpc}} \left(\frac{\lambda}{1 \text{ Mpc}} \right)^{-(n_{B}+3)/2} \text{ (for } \lambda < \lambda_{\text{cut}} \text{)}$$

$$B_{\lambda} = B_{1 \text{ Mpc}} \left(\frac{\lambda}{1 \text{ Mpc}} \right)^{-(n_{B}+3)/2} \text{ (for } \lambda \geq \lambda_{\text{cut}} \text{)}$$

$$PMF \text{ strength smoothed on 1Mpc}$$

$$Before the recombination epoch, radiative viscosity damps PMFs on scales ~photons' mean free path.$$

$$\lambda_{\text{cut}} = \left(\frac{B_{\text{cut}}^{2}}{4\pi\rho_{\text{CMB}}\sigma_{\text{T}}} \int_{0}^{t_{\text{rec}}} \frac{c \ dt}{a^{2} \ n_{e}} \right)^{\frac{1}{2}} \simeq \left[7.2 \times 10^{-4} \times \left(\frac{B_{1 \text{ Mpc}}}{1 \text{ nG}} \right)^{2} \right]^{\frac{1}{n_{B}+5}} \text{ [Mpc]}$$

*(Jedamzik+ 1998; Subramanian & Barrow 1998)

2. Theory & Methods

PMFs as an IGM heating source

- Ambipolar Diffusion
 - PMFs dissipate due to the friction between electrical charged particles and the neutral particles.
 - Heating rate is proportional to the Lorentz force. $\dot{Q}_{AD} \propto |(\nabla \times B) \times B|^2$
 - Decaying Turbulence
 - Kolmogorov-like turbulence cause small-scale eddies, which is thermalized due to Ohmic dissipation.
 - Heating rate is proportional to the PMF energy density. $\dot{Q}_{\rm DT} \propto |{\it B}|^2$

Evolutionary equations for IGM

2. Theory & Methods

1. Introduction

- Primordial Magnetic Fields (PMFs)
- 21-cm global signal
- IGM thermal history in Dark Age

2. Theory and Methods Statistical property of PMFs MHD dissipation and heating IGM

- - IGM thermal history with PMFs
 - A constraint on the PMFs

IGM thermal history (with PMFs)

A constraint on PMFs

• Calculate $T_{\rm K}$ with various PMF model parameters $(B_{1 \, \rm Mpc}, n_B)$

Summary

- PMFs are possible origin of the cosmic magnetic fields
- We assume the power-law scale-dependence of PMFs
- Calculate $T_{\rm K}$ with various PMF model parameters $(B_{1 \, \rm Mpc}, n_B)$
- From 21-cm global absorption signal observation, $T_{\rm K} < T_{\rm CMB}$ for $z \sim 17$
- We derive the tightest upper bound on the PMFs as $B_{1 \text{ Mpc}} \lesssim 0.1 \text{ nG}$

Thank you for listening!

