Probing primordial isocurvature perturbations with 21-cm global signal

2022 Berkeley 5th Global 21-cm Workshop 19th October 2022

Teppei Minoda (University of Melbourne),

with Shintaro Yoshiura, and Tomo Takahashi (arXiv:2112.15135, PRD 105 083523)

Adiabatic and isocurvature perturbations

• For the pure adiabatic mode, the entropy is conserved:

$$S_{a,b}\equiv rac{\delta n_a}{\overline{n}_a}-rac{\delta n_b}{\overline{n}_b}=0$$

 $(n_a:$ number density of the particle labeled "a")

Adiabatic and isocurvature perturbations

isocurvature (entropy) perturbations

• For the isocurvature mode, the entropy is perturbed:

$$S_{a,b}\equiv rac{\delta n_a}{\overline{n}_a}-rac{\delta n_b}{\overline{n}_b}=rac{\delta_a}{1+w_a}-rac{\delta_b}{1+w_b}$$

Adiabatic and isocurvature perturbations

• Power spectra of curvature and isocurvature (entropy) perturbations

$$egin{aligned} \mathcal{P}_{\zeta}(k) &= A_{ ext{s}}^{ ext{adi}} igg(rac{k}{k_{st}}igg)^{n_{ ext{s}}^{ ext{adi}}-1} \ \mathcal{P}_{S_{ ext{CDM}}}(k) &= A^{ ext{iso}} igg(rac{k}{k_{st}}igg)^{n^{ ext{iso}}-1} \ r_{ ext{CDM}} &= rac{A^{ ext{iso}}}{A_{st}^{ ext{adi}}} \end{aligned}$$

Parameters for the curvature power spectrum is fixed by Planck 2018.

 $egin{array}{lll} A_{
m s}^{
m adi} &= 2.101 imes 10^{-9}, \ n_{
m s}^{
m adi} &= 0.965 \end{array}$

the isocurvature perturbations are parameterized by r_{CDM} and n^{iso}

Matter power spectrum

- The blue-tilted isocurvature perturbations enhance the matter power spectrum on small scales.
- Increasing r_{CDM}, the amplitude of matter power spectrum is larger.
- Blue-tilted isocurvature is naturally explained by the QCD axion (Kasuya and Kawasaki 2009)

Astrophysical parameters

- We use galaxy-driven reionization model with "21cmFAST"
- UV luminosity function is written by:

$$\phi(M_{
m UV}) = \left(f_{
m duty}rac{dn}{dM_{
m h}}
ight) \left|rac{dM_{
m h}}{dM_{
m UV}}
ight|$$

• Duty cycle is parametrized by M_{turn}:

$$f_{
m duty}\,= \exp\!\left(-rac{M_{
m h}}{M_{
m turn}}
ight)$$

M_{turn}: the minimum halo mass to host galaxies due to the cooling and/or stellar feedback

A. Mesinger, S. Furlanetto, & R. Cen (2011), MNRAS, 411, 955

Astrophysical parameters

• UV magnitude is determined by the star formation rate

$$\dot{M}_*(M_{
m h},z) = rac{M_*}{t_*H(z)^{-1}}$$

 t_{\star} : the typical star formation timescale normalized by the Hubble time

The stellar-to-halo mass ratio

$$rac{M_*}{M_{
m h}} = f_{*,10}igg(rac{M_{
m h}}{10^{10}M_\odot}igg)^{lpha_*}igg(rac{\Omega_{
m b}}{\Omega_{
m m}}igg)$$

Astrophysical parameters

 The recent 21-cm observations by HERA give constraints on the astrophysical parameters

The best fitted values for HERA constraint is the model 1 (fiducial)

	$lpha_*$	$M_{ m turn} \left[M_{\odot} ight]$	t_*	$\log_{10}(L_{\rm X<2.0 keV}/{\rm SFR}/[{\rm erg~s^{-1}}M_{\odot}^{-1}~{\rm yr}])$
model 1	0.50	$3.8 imes 10^8$	0.60	40.64
model 2	0.41	$1.6 imes 10^{8}$	0.29	41.52
model 3	0.62	1.5×10^{9}	0.86	39.47

Table 1: Astrophysical parameters for each model adopted in our analysis.

21-cm global signal

Differential brightness temperature:

$$\delta T_{
m b}(
u) \simeq 27 x_{
m HI}(z) igg(rac{1+z}{10} igg)^{1/2} igg(1 - rac{T_{
m CMB}(z)}{T_{
m spin}(z)} igg) [{
m mK}]$$

Increasing the isocurvature fraction, the Ly- α coupling and heating starts at higher redshifts.

The central redshifts of absorption signal are z_{min} =12.46 (r_{CDM} =0.0), 17.11 (r_{CDM} =0.05), and 21.08 (r_{CDM} =0.1)

We fix n^{iso}=2.5

Constraints in 2-D parameter space

 Once the absorption signal can be observed around some redshift, we can obtain the constraint on the isocurvature perturbations.

Chi² analysis in 2-D parameter space

Summary

- We calculate the effects of the isocurvature perturbations on the 21cm line signal, and give a constraint on isocurvature.
- We also discuss the degeneracy between uncertainty of astrophysical parameters and one of isocurvature parameters.
- For the future prospects, the further severe constraint would be given by the combined analysis of the 21-cm line signal and the other observables (the CMB optical depth, galaxy luminosity function, and so on)
- <u>Please see our paper arXiv:2112.15135 if you are interested</u>

Matter power spectrum

 Primordial power spectrum is related to the matter power spectrum through the transfer function

$$P_{
m m}(k) = \mathcal{P}_{\zeta}(k)T_{
m adi}^2(k) + \mathcal{P}_{S_{
m CDM}}(k)T_{
m iso}^2(k)$$

• BBKS (1986) and Sugiyama (1995) give transfer functions:

$$egin{split} T_{
m adi}\left(k
ight) &= rac{\ln(1+2.34q)}{2.34q} imes \left[1+3.89q+(16.1q)^2+(5.46q)^3+(6.71q)^4
ight]^{-1/4} \ T_{
m iso}\left(k
ight) &= \left[1+rac{(40q)^2}{1+215q+(16q)^2(1+0.5q)^{-1}}+(5.6q)^{8/5}
ight]^{-5/4} \end{split}$$

where
$$q=k/ig(\Omega_{
m m}h^2\exp(\Omega_{
m b}-\Omega_{
m b}/\Omega_{
m m})ig[{
m Mpc}^{-1}ig]ig)$$