日本物理学会2020年秋季大会

UCMHの個数と21-cm線 グローバルシグナルについて

箕田鉄兵,田代寛之(名古屋大学)

Ultracompact minihalo (UCMH)?

The density profiles of ultracompact minihalos: implications for constraining the primordial power spectrum

M. Sten Delos,¹,^{*} Adrienne L. Erickcek,¹, Avery P. Bailey,^{2,1} and Marcelo A. Alvarez³

UCMHs:

A dark matter structure hypothesized to possess $\rho \propto r^{-9/4}$ density profile due to its formation at $z \ge 1000$.

(Filmore+ 1984, Bertschinger 1985)

Their purpose: Confirming the UCMH density profile with N-body simulation

1. Introduction

Ultracompact minihalo (UCMH)?

The density profiles of ultracompact minihalos: implications for constraining the primordial power spectrum

M. Sten Delos,¹,^{*} Adrienne L. Erickcek,¹, Avery P. Bailey,^{2,1} and Marcelo A. Alvarez³

<u>Setup:</u>

- spiked power spectrum on small scale ~ 1 kpc
- initial redshift: $z = 8 \times 10^6$
- box size: L = 7.4 ckpc
- particle number: $N = 512^3$
- GADGET-2 with radiation
- ROCKSTAR halo finder

З

1. Introduction

Ultracompact minihalo (UCMH)?

The density profiles of ultracompact miprimordial po

M. Sten Delos,¹, Adrienne L. Erickcek,¹,

<u>Setup:</u>

- spiked power spectrum on small scale ~ 1 kpc
- initial redshift: $z = 8 \times 10^6$
- box size: L = 7.4 ckpc
- particle number: $N = 512^3$
- GADGET-2 with radiation
- ROCKSTAR halo finder

(Delos et al., 1806.07389)

UCMH density profile

Steeper inner profile than NFW, but $\rho \neq r^{-9/4}$

(Delos et al., 1806.07389)

1. Introduction

What is 21-cm line?

EM wave due to neutral hydrogen hyperfine structure

21-cm global signal

Observable

physical state of HI

Roughly speaking, emission for $T_{\rm K} \ge T_{\rm spin} \ge T_{\gamma} ,$ and absorption for $T_{\rm K} \le T_{\rm spin} \le T_{\gamma}$

Theoretical prediction for 21-cm global signal McQuinn & O'Leary, 2012 (arXiv:1204.1345)

21-cm global signal

Observable

physical state of HI

Roughly speaking, emission for

6

$$T_{
m K} \ge T_{
m spin} \ge T_{\gamma}$$
 ,
nd absorption for
 $T_{
m K} \le T_{
m spin} \le T_{\gamma}$

<u>We focus on</u> <u>absorption signal</u> <u>during Dark Age (z~17)</u>

Theoretical prediction for 21-cm global signal McQuinn & O'Leary, 2012 (arXiv:1204.1345)

IGM thermal history

9

Adiabatic calculation => $T_{CMB} > T_{K}$ (absorption) around $z \sim 17$

IGM thermal history

Adiabatic calculation => $T_{CMB} > T_{K}$ (absorption) around $z \sim 17$

Gamma-ray emission due to DM annihilation from UCMH

Gamma-ray luminosity

dark matter mass: $m_x = 1$ (TeV) annihilation rate: $\langle \sigma v \rangle = 3 \times 10^{-26}$ (cm³/s)

How many DM annihilates inside one UCMH per unit time

UCMH abundance

UCMH number density from peak theory

UCMH abundance

UCMH number density from peak theory

$$rac{dn_{\mathrm{UCMH}}}{da} = rac{k_s^3}{a} h(
u)$$
 (Bardeen et al., 1986)

peak height:
$$\nu \equiv \frac{\delta_c}{\sqrt{A_{mat}}a}$$

wave-number of spike: k_s

IGM thermal history with UCMH

IGM thermal history with UCMH

3. Results and Discussions

Current constraints on primordial power spectrum

 Constrained primordial power spectrum on small-scales from 21-cm global absorption signal

 Calculated IGM thermal history during Dark Ages with DM annihilation from UCMHs

✓ absorption signal at redshift $z \sim 17$ => $P_{\zeta} < 10^{-7}$ at $k_s < 10^0$ Mpc⁻¹, $P_{\zeta} < 10^{-9}$ at $k_s < 10^7$ Mpc⁻¹.

Backup

Bringmann et al., 1110.2484