

Thermal Sunyaev-Zel'dovich effect in the IGM due to the primordial magnetic fields

Teppei MINODA,

K. Hasegawa, H. Tashiro, K. Ichiki, and N. Sugiyama Cosmology group, Nagoya University, JAPAN

Today's Contents

1. Introduction

· Primordial Magnetic Fields & Its Constraint

2. Theory

- · Gas dynamics with the PMFs (previous work)
- · Thermal Sunyaev-Zel'dovich effect

3. Methods

4. <u>Results</u>

- · Evolution of the gas density & temperature
- · CMB temperature anisotropy

Cosmic Magnetic Fields

M51 galaxy [visible & radio] VLA/Effelsberg 20cm, HST (Fletcher+, 2011, MNRAS, 412)

Coma Cluster [radio] WSRT, 90cm (Giovannini+, 1993, ApJ, 406)

2/20

Cosmic Magnetic Fields

(Fletcher+, 2011, MNRAS, 412)

(Giovannini+, 1993, ApJ, 406)

2/20

The origin of B-fields

Cosmological origin ?

(e.g. Jennifer's talk)

- Inflation
- Phase transition
- New physics
 Small strength compared to the observed value
 Difficult for observational test

Astrophysical origin ?

- (e.g. Julius' talk)
- Shock wave
- Turbulent motion
- Plasma physics
- Too small scale to calculate cosmological evolution Difficult to explain IGMF?

The origin of B-fields

Cosmological origin ?

(e.g. Jennifer's talk)

- Inflation
- Phase transition
- New physics

Small strength compared to the observed value

Difficult for observational test

Astrophysical origin ?

- (e.g. Julius' talk)
- Shock wave
- Turbulent motion
- Plasma physics
- Too small scale to calculate cosmological evolution

Difficult to explain IGMF?

Is there an observational signal for the Primordial Magnetic Fields (PMFs)?

3/20

The origin of B-fields

constraint on the PMFs from the CMB anisotropy

Constraint from CMB

Cosmic Microwave Background (CMB)

Motivation

$B_{1 \text{ Mpc}} \lesssim 4 \text{ nG}$ Can the PMFs affect the universe after the recombination epoch?

6/20

credit: Planck

the recombination

Motivation

6/20

Dark Age

credit: Planck

Focus on the PMFs and gas dynamics in the Dark Age (T_{gas} and n_{gas} time evolution) [Reasons] Little ambiguity of the theory No astronomical objects

ime

the recombination

z~1100

Methods

GOAL : To consider the effects of the PMFs on gas dynamics in the dark age and CMB temperature anisotropy

[Our work]

 Calculate evolution T_{gas} and n_{gas} with PMFs in the dark age

② Estimate CMB anisotropy generated by tSZ effect

(Sethi & Subramanian, 2005, MNRAS, 356)

8/20

[Abstract of SS 2005]

- PMFs could heat the baryon gas through ambipolar diffusion
- PMFs with B~3 [nG] can heat up

the gas temperature to

T~10⁴ [K] after the recombination.

Illustration of ambipolar diffusion

(Sethi & Subramanian, 2005, MNRAS, 356)

What is ambipolar diffusion?

Neutral bulk motion Charged bulk motion + magnetic effects > occurrence of the relative motion

Illustration of ambipolar diffusion

9/20

(Sethi & Subramanian, 2005, MNRAS, 356)

9/20

What is ambipolar diffusion?

Neutral bulk motion
Charged bulk motion
+ magnetic effects
> occurrence of
the relative motion
> induce electric dipole
moment to the neutrals

(Sethi & Subramanian, 2005, MNRAS, 356)

What is ambipolar diffusion?

Neutralbulk motionChargedbulk motion

+ magnetic effects

> occurrence of

the relative motion

> induce electric dipole moment to the neutrals

moment to the neutrals

> thermalize the relative motion from B-fields

$$\frac{dT_{\text{gas}}}{dt} = -2H(t)T_{\text{gas}}$$
 adiabatic cooling from

$$+ \frac{x_i}{1+x_i} \frac{8\rho_\gamma \sigma_T}{3m_e c} (T_\gamma - T_{\text{gas}})$$
 Compton scattering
with CMB photons

$$+ \frac{\Gamma(t)}{1.5k_B n_b}$$
 Ambipolar diffusion
from PMFs

$$T_\gamma : \text{CMB temperature} \quad \begin{array}{c} \rho_\gamma : \text{CMB energy density} \\ \sigma_T : \text{cross-section of} \\ H : \text{Hubble parameter} \end{array}$$

(Sethi & Subramanian, 2005, MNRAS, 356)

[Assumptions]

PMFs are almost scale-invariant. Gas density is homogeneous.

\rightarrow We change !!

Also, we estimate the observables.

(Sunyaev-Zel'dovich effect)

Redshift

12/20

Fluctuations of gas create fluctuations of CMB temperature y-parameter of Compton scattering

$$y(\hat{n},l) \equiv \frac{k_{\rm B}\sigma_{\rm T}}{m_{\rm e}c^2} \int_0^l \frac{n_{\rm e}(\hat{n},l')T_{\rm e}(\hat{n},l')}{\frac{{\rm Density \ {\rm Temperature}}}} \frac{1}{2} \frac{1}{2$$

13/20

1 Numerical realization of the 3d PMFs

- Vector potential A
- B fields $\mathbf{B} = \nabla \times \mathbf{A}$
- Lorentz force $\mathbf{L} = \frac{(\nabla \times \mathbf{B}) \times \mathbf{B}}{4\pi}$

%assume that MFs evolve adiabatically

② calculate T_{gas} & n_{gas} at each time & place 1000 > z > 10

14/20

Basic equations of baryon fluid

 $\begin{cases} \frac{\partial \rho_{\rm b}}{\partial t} + \nabla \cdot (\rho_{\rm b} \mathbf{u}_{\rm b}) = 0 & \text{Lorentz force of PMFs} \\ \frac{\partial \mathbf{u}_{\rm b}}{\partial t} + (\mathbf{u}_{\rm b} \cdot \nabla) \mathbf{u}_{\rm b} = -\frac{\nabla p}{\rho_{\rm b}} + \frac{(\nabla \times \mathbf{B}_0) \times \mathbf{B}_0}{4\pi \rho_{\rm b}} - \nabla \Phi \\ \frac{\partial \mathbf{u}_{\rm b}}{\partial t} + (\mathbf{u}_{\rm b} \cdot \nabla) \mathbf{u}_{\rm b} = -\frac{\nabla p}{\rho_{\rm b}} + \frac{\nabla p}{4\pi \rho_{\rm b}} + \frac{\nabla p}{2\pi \nu_{\rm b}} + \frac{\nabla p}{2\pi \nu$ pressure density fluctuation from the background value $\rho_{\rm b} = \bar{\rho_{\rm b}}(1+\delta_{\rm b})$ linear approximation ($\delta_{\rm b} \ll 1$) + cosmic expansion baryon density evolution $\ddot{\delta}_{\rm b} + 2\frac{\dot{a}\dot{\delta}_{\rm b}}{a} - 4\pi G[\bar{\rho}_{\rm c}\delta_{\rm c} + \bar{\rho}_{\rm b}\delta_{\rm b}] = \frac{\nabla\cdot(\nabla\times\mathbf{B}_{0})\times\mathbf{B}_{0}}{4\pi\bar{\rho}_{\rm b}}a^{3}$ 15/20

3 Estimate of the T_{СМВ} anisotropy from the 3D y-parameter map. y-parameter of Compton scattering 64³ $y(\hat{n},l) \equiv \frac{k_{\rm B}\sigma_{\rm T}}{m_{\rm e}c^2} \int_0^l n_{\rm e}(\hat{n},l') T_{\rm e}(\hat{n},l') \ dl'$ density temperature grids Box size 2 Mpc Integrate y-parameter in 1000 > z > 10 CMB temperature angular power spectrum credit: Planck m > 2

$$C_{\ell} = \frac{(g_{\nu}T_{\gamma})^2}{4\pi} \int P_{\ell}(\cos\theta) \langle y(\hat{n})y(\hat{n}')\rangle \ d^2\hat{n} \ d^2\hat{n}'$$
(Legendre polynomials)
$$(\text{Legendre polynomials})$$

$$17/20$$

Lorentz force [x10⁵ nG² Mpc⁻²] z=10.471285 gas # density [cm⁻³] z=10.471285

gas temperature [x10⁴ K] z=10.471285

3

2

1

0

10

8

6

4

2

0

x [Mpc]

CMB anisotropies

CMB anisotropies

CMB anisotropies

Summary

- Focus on the <u>PMFs</u> and observables
- The effect of B_{1Mpc}~0.5 nG PMFs on structure formation in the cosmic Dark Age.
- calculated <u>Density</u> and <u>Temperature</u> of baryon gas, and found their <u>anti-correlation</u>
- estimate the CMB temperature anisotropy from thermal Sunyaev-Zel'dovich effect

20/20