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galaxy B ~10-5 G cluster B~10-6 G

M51 galaxy [visible & radio] 
VLA/Effelsberg 20cm, HST 
(Fletcher+, 2011, MNRAS, 412)

Coma Cluster [radio] WSRT, 90cm 
(Giovannini+, 1993, ApJ, 406)
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Cosmic Magnetic Fields

B-fields exist. 
What is the origin？ 

> Unknown.
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Astrophysical origin ? 
(e.g. Julius’ talk) 

Shock wave 
Turbulent motion 
Plasma physics 

Too small scale to calculate 
　cosmological evolution 
Difficult to explain IGMF?

Cosmological origin ? 
(e.g. Jennifer’s talk) 

Inflation 
Phase transition 
New physics 

Small strength compared to  
　the observed value 
Difficult for observational test

The origin of B-fields
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　the observed value 
Difficult for observational test

The origin of B-fields

Is there an observational signal for 
the Primordial Magnetic Fields (PMFs)?



credit: N. Yoshida

Dark Age First stars
LSS/ 

at present
credit: SDSS
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credit: Planck

timez~1100

The origin of B-fields
constraint on the PMFs from the CMB anisotropy



Cosmic Microwave Background (CMB)

Radiation with T~2.725 K 
Actually there is some fluctuation 

→ Metric perturbation 
To constrain the stress-energy 

tensor of the PMFs

COLD

HOT
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constraint from Planck 2015

Constraint from CMB

(Planck Collaboration, 2016, A&A, 594)

credit: Planck
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Dark Age First stars
LSS/ 

at present
credit: SDSS
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Motivation

credit: Planck

timethe recombination 
z~1100

Can the PMFs affect the universe 
after the recombination epoch ?
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Dark Age First stars Present
credit: SDSS
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Can the PMFs affect the universe 
after the recombination epoch ?

credit: Planck

timethe recombination 
z~1100

Focus on the PMFs 
and gas dynamics 
in the Dark Age 

(Tgas and ngas time evolution) 
[Reasons] 

• Little ambiguity of the theory 
• No astronomical objects 

Motivation



[Our work] 

①Calculate evolution Tgas and 
ngas with PMFs in the dark age 

② Estimate CMB anisotropy 
generated by tSZ effect

GOAL：To consider the effects of the PMFs 
　　　　on gas dynamics in the dark age 
　　　　and CMB temperature anisotropy
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Methods



8/20

[Abstract of SS 2005] 
PMFs could heat the baryon gas 

　through ambipolar diffusion 
PMFs with B~3 [nG] can heat up 

　the gas temperature to 
　T~104 [K] after the recombination.

H

ion

B

relative 
velocity

Illustration of 
ambipolar diffusion

Thermal history with PMFs
(Sethi & Subramanian, 2005, MNRAS, 356)
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What is ambipolar diffusion？ 
Neutral   bulk motion 
Charged bulk motion  
              + magnetic effects 
> occurrence of 
　the relative motion 

Thermal history with PMFs
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velocity
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(Sethi & Subramanian, 2005, MNRAS, 356)

ion

+
-

electric dipole moment

What is ambipolar diffusion？ 
Neutral   bulk motion 
Charged bulk motion  
              + magnetic effects 
> occurrence of 
　the relative motion 
> induce electric dipole 
　moment to the neutrals 

Thermal history with PMFs
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ion

B

relative 
velocity

(Sethi & Subramanian, 2005, MNRAS, 356)
What is ambipolar diffusion？ 
Neutral   bulk motion 
Charged bulk motion  
              + magnetic effects 
> occurrence of 
　the relative motion 
> induce electric dipole 
　moment to the neutrals 
> thermalize the relative motion 
　from B-fields

ion

scattering 
cross section

ion +
-

Illustration of 
ambipolar diffusion

Thermal history with PMFs
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ion

B

relative 
velocity

(Sethi & Subramanian, 2005, MNRAS, 356)

ion

scattering 
cross section

ion +
-

Illustration of 
ambipolar diffusion

Heating rate with ambipolar diffusion

baryon mass density：
baryon ionization fraction：

(Draine+, 1983, ApJ, 270)

collisional coefficient：

Thermal history with PMFs



adiabatic cooling from 
the cosmic expansion

Ambipolar diffusion 
from PMFs

Compton scattering 
with CMB photons

：gas temperature
：CMB temperature
：Hubble parameter

11/20

：CMB energy density
：cross-section of  
　Thomson scattering

(Sethi & Subramanian, 2005, MNRAS, 356)

Thermal history with PMFs



B1 Mpc=3 nG
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CMB

Redshift

gas w/o PMFs

(Sethi & Subramanian, 2005, MNRAS, 356)

Thermal history with PMFs



B1 Mpc=3 nG

heat up to T~10000 K after z~800
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gas w/o PMFs
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B1 Mpc=3 nG

heat up to T~10000 K after z~800

12/20

gas w/o PMFs

Te
m
pe
ra
tu
re
 [ 
K]

Redshift

(Sethi & Subramanian, 2005, MNRAS, 356)

[Assumptions] 
• PMFs are almost scale-invariant. 
• Gas density is homogeneous. 

→ We change !! 
Also, we estimate the observables. 

(Sunyaev-Zel’dovich effect)

Thermal history with PMFs
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CMB

credit: Planck

Sunyaev-Zel’dovich effect

timethe recombination 
z~1100
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CMB

credit: Planck

Increase of CMB temperature due to 
the pressure of free electrons inside gas 

Sunyaev-Zel’dovich effect

timethe recombination 
z~1100

HOT 
GAS



13/20

CMB

credit: Planck

Increase of CMB temperature due to 
the pressure of free electrons inside gas 

Sunyaev-Zel’dovich effect

HOT 
GAS

e-

Carlstrom+, 2002 
ARA&A, 40

e-

Inverse Compton scattering

γ
γ

CMB photons gain their energy (spectral distortion)
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CMB

credit: Planck

Increase of CMB temperature due to 
the pressure of free electrons inside gas 
= Sunyaev-Zel’dovich effect (SZ effect)

direction of sight

distance

y-parameter of Compton scattering

Density Temperature

Fluctuations of gas 
create fluctuations 
of CMB temperature

？

Sunyaev-Zel’dovich effect

HOT 
GAS
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宇宙の晴れ上がり 
~38万年

CMB

credit: Planck

？
The fluctuations 
of Tgas, ngas, B 
is significant !!

Sunyaev-Zel’dovich effect

y-parameter of Compton scattering

Density Temperature

Fluctuations of gas 
create fluctuations 
of CMB temperature
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①Numerical realization of the 3d PMFs

② calculate Tgas & ngas 
　at each time & place 
　 1000 > z > 10

Source terms:

Our work

Lorentz force

Vector potential
B fields

※assume that MFs evolve adiabatically
Box Size 2 Mpc 
(co-moving coordinate)

643  
grids



Basic equations of baryon fluid

density fluctuation from the background value
pressure

gravity

Lorentz force of PMFs

linear approximation (　　　) + cosmic expansion
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Our work

baryon density evolution



effect of local density fluctuations

Cooling due to atomic state-trans.
16/20

baryon density fluctuation due to the PMFs

Tgas time evolution

bremsstrahl. 
collis.-excit. 
recombinat. 
collis.-ioniz.

Our work
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density temperature

Integrate y-parameter in 1000 > z > 10 
CMB temperature angular power spectrum

(Legendre polynomials)

③Estimate of the TCMB anisotropy 
　 from the 3D y-parameter map.

multipole

credit: Planck

Box size 2 Mpc

643 
grids 

Our work

y-parameter of Compton scattering
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Evolution from z=1000 to 10

gas # density 
[ cm-3]

gas temperature 
[ x104 K]

Lorentz force 
[x105 nG2 Mpc-2]

Results
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✓ Anticorrelation b/w ngas and Tgas 
✓ characteristic length ~100 kpc

gas # density 
[ cm-3]

gas temperature 
[ x104 K]

Lorentz force 
[x105 nG2 Mpc-2]

Results
Evolution from z=1000 to 10
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CMB anisotropies

 multipole
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great effect on the small-scale CMB 
temperature anisotropy? 

↓ 
(about the observational possibility) 

discussion in the future work.



• Focus on the PMFs and observables 

• The effect of B1Mpc~0.5 nG PMFs on structure 
formation in the cosmic Dark Age. 

• calculated Density and Temperature of 
baryon gas, and found their anti-correlation 

• estimate the CMB temperature anisotropy 
from thermal Sunyaev-Zel’dovich effect
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Summary


